首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1 Introduction 1 High temperature air combustion (HTAC) [1] can offer significantly improved thermal efficiency, reduced NOx emission and uniform heat flux field. Most of HTAC use the honeycomb regenerative system to preheat the air to a temperature above…  相似文献   

2.
研究目的:研究新型磁性回热填料Gd2O2S对液氦温区高频脉管制冷机多级回热器损失特性的影响。 创新要点:确定了不同回热填料以及运行参数(频率、平均压力)下液氦温区多级脉管制冷机的制冷温度和各级预冷量,进一步明确了4K高频回热损失机理。 研究方法:采用理论研究与实验验证相结合的方法,基于一台两级G-M型低频脉管制冷机预冷的单极斯特林型高频脉管制冷机,研究多级回热器在高频以及4K温区下的损失特性。选取新型回热填料Gd2O2S替代部分回热填料HoCu2,比较回热器采用两种填料时在不吲运行频率及平均压力下的冷端制冷温度(图10)、各级预冷量和预冷温度(图1112)。 重要结论:采用孔隙率较小的新型磁性回热填料Gd2O2S可显著改善第一级回热器内压力波与质量流的相位关系,从而减小该级回热损失。减小平均压力可以降低制冷机无负荷制冷温度并减小第二级预冷量,但制冷工质氦的体积比热容会急剧增大,从而使低温级回热器的换热对频率非常敏感。此外,频率对高温级回热器的回热特性影响不明显。该方法可以为三级斯特林型4K多级脉管制冷机提供设计依据。  相似文献   

3.
在一种太阳能驱动、采用喷雾吸收器并以板式换热器作为主要换热部件的LiNO3-NH3-He三工质扩散吸收式制冷系统中,根据试验测得的运行参数,以溶液的p-t-x西方程及物性方程、传热基础理论等为依据,提出了计算溶液换热器中溶液流量的方法,并利用综合传热系数k、传热单元数N_TU与换热器效率s研究了板式换热器作为LiN03-NH3-He扩散吸收式制冷系统发生器、冷凝器、溶液热交换器、溶液冷却器时的换热性能.试验与分析表明,板式换热器的换热面积及其内部流道中的流量(流速)对其综合传热性能具有较大影响;在介质流量一定时,板式换热器不宜考虑过大的面积预留量;板式溶液换热器内部流道宜采用多流程布置形式以强化传热、提高换热效率.  相似文献   

4.
Heat transfer between gas-solid multiphase flow and tubes occurs in many industry processes, such as circulating fluidized bed process, pneumatic conveying process, chemical process, drying process, etc. This paper focuses on the influence of the presence of particles on the heat transfer between a tube and gas-solid suspension. The presence of particles causes positive enhancement of heat transfer in the case of high solid loading ratio, but heat transfer reduction has been found for in the case of very low solid loading ratio (M s of less than 0.05 kg/kg). A useful correlation incorporating solid loading ratio, particle size and flow Reynolds number was derived from experimental data. In addition, thek-∈ two-equation model and the Fluctuation-Spectrum-Random-Trajectory Model (FSRT Model) are used to simulate the flow field and heat transfer of the gasphase and the solid-phase, respectively. Through coupling of the two phases the model can predict the local and total heat transfer characteristics of tube in gas-solid cross flow. For the total heat transfer enhancement due to particles loading the model predictions agreed well with experimental data. Project supported by National Natural Science Foundation for Distinguished Young Scholars (No. 50025618)  相似文献   

5.
Compression and expansion of a working gas due to the pressure oscillation of an oscillating flow can lead to a temperature variation of the working gas, which will affect the heat transfer in the oscillating flow. This study focuses on the impact of the compression-expansion effect, indicated by the pressure ratio, on the heat transfer in a finned heat exchanger under practical operating conditions of the ambient-temperature heat exchangers in Stirling-type pulse tube refrigerators. The experimental results summarized as the Nusselt number are presented for analysis. An increase in the pressure ratio can result in a marked rise in the Nusselt number, which indicates that the compression-expansion effect should be considered in characterizing the heat transfer of the oscillating flow, especially in the cases with a higher Valensi number and a lower maximum Reynolds number.  相似文献   

6.
为了达到高效的制冷与制热效果,通过建立以多孔介质渗流力学为基础的计算流体动力学模型(CFD)来研究室外机与环境空气的换热过程,以获得室外机的合理布置方式;同时在实验室建立等尺度的室外机物理模型进行测试,获得了比较吻合的速度和温度分布结果,验证了CFD模拟方法的准确性.然后应用数值模拟方法分析不同布置方案下室外机的进风温度,优化了实际工程中3台室外机成直线布置时的合理间距:相邻2台机组之间的最小距离须大于0.2m,机组主要进风侧面与其周围高于机组的竖直墙面的极限间距为0.8m;风机动力相差较大的室外机相邻布置时,其中风机压差较大的室外机不会影响其他机组的进风量和换热量.  相似文献   

7.
提出过冷流动沸腾热传递的分形模型,根据加热表面活化点的分形分布得到了过冷流动沸腾热流密度的表达式。从该模型中发现过冷流动沸腾热流密度是壁面过热度、流体的过冷度、流体的主流速度与流体的接触角、流体物理特性的函数关系,并且没有增加新的经验常数。模型预测的结果与实验数据进行了比较,两者是极好的吻合。  相似文献   

8.
基于德拜模型讨论晶格比热   总被引:1,自引:0,他引:1  
刘丹 《培训与研究》2007,24(8):10-12
晶格比热是反映晶体热学性质的一个重要物理量。对晶格比热的具体求解是一个相当复杂的问题,在一般讨论中,常采用爱因斯坦模型及德拜模型。本文基于德拜模型系统地研究了一维简单晶格,二维简单晶格以及三维晶格的晶格比热,并讨论了高低温极限,对进一步理解德拜模型的物理思想,及其讨论具体问题的方法有重要意义。  相似文献   

9.
Jiang  Feng  Jiang  Teng  Qi  Guopeng  Li  Xiulun 《天津大学学报(英文版)》2019,25(3):201-213
A circulating fluidized bed evaporator(including down-flow, horizontal, and up-flow beds) was constructed to study the effect of flow directions on multiphase flow boiling heat transfer. A range of experimental investigations were carried out by varying amount of added particles(0-2%), circulation flow rate(2.15-5.16 m~3/h) and heat flux(8-16 kW/m~2). The comparison of heat transfer performance in different vertical heights of the horizontal bed was also discussed. Results reveal that the glass bead particle can enhance heat transfer compared with vapor-liquid two-phase flow for all beds. At a low heat flux(q = 8 kW/m), the heat-transfer-enhancing factor of the horizontal bed is obviously greater than those of the up-flow and down-flow beds. With the increase in the amount of added particles, the heat-transfer-enhancing factors of the up-flow and down-flow beds increase, whereas that of the horizontal bed initially increases and then decreases. However, at a high heat flux(q=16 kW/m), the heat-transfer-enhancing factors of the three beds show an increasing tendency with the increase in the amount of added particles and become closer than those at a low heat flux. For all beds, the heat-transfer-enhancing factor generally increases with the circulation flow rate but decreases with the increase in heat flux.  相似文献   

10.
基于流体网络理论,研究了通过改变回热器流阻对由双向进气阀诱发的直流流动进行抑制的可行性,计算结果表明,增加回热器流阻可以有效地抑制直流,进而有望提高脉管制冷机在高温区的稳定性能.在此基础上,采用不同的回热器填料布置方式,对脉管制冷机的稳定特性开展实验研究,通过采用直径0.25 mm的铅丸代替回热器冷端(0.3回热器长度)247目不锈钢丝网的方法,实现了制冷机在80 K温区长时间稳定工作.该研究为解决脉管制冷机存在的高温区性能不稳定提供了新的途径.  相似文献   

11.
This paper reports research on the effects of variations in injection velocity and permeability on the heat transfer and flow through a highly porous medium between two horizontal parallel plates situated at constant distance with constant suction by the upper plate. Due to this type of variation in injection velocity and in permeability the flow becomes three dimensional. The governing equations are solved by adopting complex variable notations to obtain the expressions for the velocity and temperature field. The skin-friction along the main flow direction and rate of heat transfer are discussed with the help of graphs.  相似文献   

12.
在多用炉中采用51单片机可以检测、转换、计算、显示加热的电流值,实现节能降耗.分析了采用51单片机的多用炉热处理控制系统的设计思想、软件设计、硬件设计及Protues仿真过程.  相似文献   

13.
介绍了一种用于强化管壳式换热器壳侧传热和支撑管束的螺旋折流片新型结构,该结构是对换热器管子相间地套上螺旋折流片以产生旋涡流动.研究模型是在正方形布置的4个管子中的2个对角管子套上螺旋折流片后形成的通道,利用FLUENT软件对该上述四管通道模型的流场和温度分布情况进行了数值模拟;分析了四管通道模型中螺旋折流片对强化传热和流动阻力随雷诺数的变化关系的影响.算例结果显示该新型结构可比相同尺寸的光管通道中的情形传热系数提高约40%~55%,同时也将伴随较高的流动阻力.可以相信螺旋折流片式换热器将会在许多工业领域有良好的应用前景.  相似文献   

14.
建立了含内热源的液池内自然对流与冷却盘管内强制对流耦合传热的三维物理、数学模型,进行了相应的数值模拟计算。分别对不同内热源强度,不同冷却流体流量下液池内流体温度场以及液池与盘管内溶液换热系数进行了分析,得出换热系数随内热源强度和冷却流体流量的变化曲线,并与实验值进行了比较。结果表明盘管冷却传热模型能够较好的反映液池内的换热。  相似文献   

15.
Experiments of saturated water flow and heat transfer were conducted for a meter-scale model of regularly fractured granite. The fractured rock model (height 1502.5 mm, width 904 mm, and thickness 300 mm), embedded with two vertical and two horizontal fractures of pre-set apertures, was constructed using 18 pieces of intact granite. The granite was taken from a site currently being investigated for a high-level nuclear waste repository in China. The experiments involved different heat source temperatures and vertical water fluxes in the embedded fractures either open or filled with sand. A finite difference scheme and computer code for calculation of water flow and heat transfer in regularly fractured rocks was developed, verified against both the experimental data and calculations from the TOUGH2 code, and employed for parametric sensitivity analyses. The experiments revealed that, among other things, the temperature distribution was influenced by water flow in the fractures, especially the water flow in the vertical fracture adjacent to the heat source, and that the heat conduction between the neighboring rock blocks in the model with sand-filled fractures was enhanced by the sand, with larger range of influence of the heat source and longer time for approaching asymptotic steady-state than those of the model with open fractures. The temperatures from the experiments were in general slightly smaller than those from the numerical calculations, probably due to the fact that a certain amount of outward heat transfer at the model perimeter was unavoidable in the experiments. The parametric sensitivity analyses indicated that the temperature distribution was highly sensitive to water flow in the fractures, and the water temperature in the vertical fracture adjacent to the heat source was rather insensitive to water flow in other fractures.  相似文献   

16.
对弹性管束水-水换热器的传热与阻力特性进行了研究。主要分析了换热器在不同工况下的传热系数的变化规律;研究了弹性管束在管外流体和管内流体的共同诱导作用下,管外和管内对流换热的情况;并对管程和壳程的流动阻力损失进行了实验测量,得出了管程和壳程的阻力损失变化的规律,以及换热器管程阻力损失的计算方法。  相似文献   

17.
The heat transfer characteristics of China RP-3 aviation kerosene flowing in a vertical downward tube with an inner diameter of 4 mm under supercritical pressures are numerically studied. A ten-species surrogate model is used to calculate the thermophysical properties of kerosene and the re-normalization group (RNG) k-ε turbulent model with the enhanced wall treatment is adopted to consider the turbulent effect. The effects of mass flow rate, wall heat flux, inlet temperature, and pressure on heat transfer are investigated. The numerical results show that three types of heat transfer deterioration exist for the aviation kerosene flow. The first type of deterioration occurred at the tube inlet region and is caused by the development of the thermal boundary layer, while the other two types are observed when the inner wall temperature or the bulk fuel temperature approaches the pseudo-critical temperature. The heat transfer coefficient increases with the increasing mass flow rate and the decreasing wall heat flux, while the inlet bulk fluid temperature only influences the starting point of the heat transfer coefficient curve plotted against the bulk fluid temperature. The increase of inlet pressure can effectively eliminate the deterioration due to the small variations of properties near the pseudo-critical point at relatively high pressure. The numerical heat transfer coefficients fit well with the empirical correlations, especially at higher pressures (about 5 MPa).  相似文献   

18.
INTRODUCTION It is recognized that the transfer of soil moistureand heat occur simultaneously and are interrelated.Since the 1950s, many models have been developed,based on two nonisothermal water-heat coupledmodels by Philip and de Vries (1957) and Taylor andLary (1964), respectively. In China, some researcheson modeling coupled transfer of soil moisture andheat have also been conducted on the arid soils innorthern China (Kang et al., 1993; Guo and Li, 1997;Hu et al., 1992; …  相似文献   

19.
Simulation models of heat and water transport have not been rigorously tested for the red soils of southern China.Based on the theory of nonisothermal water-heat coupled transfer, a simulation model, programmed in Visual Basic 6.0, was developed to predict the coupled transfer of water and heat in hilly red soil. A series of soil column experiments for soil water and heat transfer, including soil columns with closed and evaporating top ends, were used to test the simulation model. Results showed that in the closed columns, the temporal and spatial distribution of moisture and heat could be very well predicted by the model,while in the evaporating columns, the simulated soil water contents were somewhat different from the observed ones. In the heat flow equation by Taylor and Lary (1964), the effect of soil water evaporation on the heat flow is not involved, which may be the main reason for the differences between simulated and observed results. The predicted temperatures were not in agreement with the observed one with thermal conductivities calculated by de Vries and Wierenga equations, so that it is suggested that Kh, soil heat conductivity, be multiplied by 8.0 for the first 6.5 h and by 1.2 later on. Sensitivity analysis of soil water and heat coefficients showed that the saturated hydraulic conductivity, Ks, and the water diffusivity, D(θ), had great effects on soil water transport; the variation of soil porosity led to the difference of soil thermal properties, and accordingly changed temperature redistribution,which would affect water redistribution.  相似文献   

20.
Gas-liquid two-phase flow and heat transfer can be encountered in numerous fields, such as chemical engineering, refrigeration, nuclear power reactor, metallurgical industry, spaceflight. Its critical heat flux (CHF) is one of the most important factors for the system security of engineering applications. Since annular flow is the most common flow pattern in gas-liquid two-phase flow, predicting CHF of annular two-phase flow is more significant. Many studies have shown that the liquid film dryout model is successful for that prediction, and determining the following parameters will exert predominant effects on the accuracy of this model: onset of annular flow, inception criterion for droplets entrainment, entrainment fraction, droplets deposi-tion and entrainment rates. The main theoretical results achieved on the above five parameters are reviewed; also, limitations in the existing studies and problems for further research are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号