首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
[定理1] 设a_1,a_2,…,a_n∈(0,π),a_1+a_2+…+a_n=φ_0(定值),则sina_1+sina_2+…+sina_n≤nsinφ_0/n.当且仅当a-1=a_2…=a_2=φ_0/n时取“=”号(n≥2). 证:(1) 当n=2时,sina_1+sina_2=2sin(a_1+a_2)/2cos(a_1-a_2)/2.  相似文献   

2.
两恒等式a_n=a_1·(a_2/a_1)……(a_n/a_(n-1))及a_n=a_1+(a_2-a_1)+…+(a_n-a_(n-1))分别被称之为等比恒等式与等差恒等式。在处理很多数列问题时,若能恰到好处地利用这两个恒等式,则会给求解带来很多方便,下面略举几例。 例1 (2002年浙江等21省市高考题)设数列{a_n}满足a_(n+1)=a_n~2-na_n+1,n∈N~+。 (1)当a_1=2时,求a_2、a_3、a_4,并由此猜想出a_n的一个通项公式。 (2)当a_1≥3时,证明对所有的n≥1有: (i)a_n≥n+2; (ii)1/(1+a_1)+1/(1+a_2)+…+1/(1+a_n)≥1/2。 简解:(1)略。 (2)(i)用数学归纳法:①当n=1,a_1≥3=1+2结论成立。  相似文献   

3.
<正>柯西不等式:设a_1,a_2,…,a_n;b_1,b_2,…,b_n是两组实数,则有n∑k=1a_k2·n∑k=1b_k2·n∑k=1b_k2≥(n∑k=1a_kb_k)2≥(n∑k=1a_kb_k)2。其中等号成立当且仅当a_1:a_2:…:a_n=b_1:b_2:…:b_n。推论:设a_1,a_2,…,a_n是正实数,则(a_1+a_2+…+a_n)(1/a_1+1/a_2+…+1/a_n)≥n2。其中等号成立当且仅当a_1:a_2:…:a_n=b_1:b_2:…:b_n。推论:设a_1,a_2,…,a_n是正实数,则(a_1+a_2+…+a_n)(1/a_1+1/a_2+…+1/a_n)≥n2,其中等号成立当且仅当a_1=a_2=…=a_n。  相似文献   

4.
在高中数学第三册中我们已知下面的重要定理: 定理 n个(n是大于1的整数)正数的算术平均值不小于它们的几何平均值,即如果a_1,a_2,…,a_n为n个正数,则(a_1+a_2+…+a_n/n≥(a_1a_2…a_n)~(1/n)式中等号当且仅当a_1=a_2=…=a_n成立. 由于这个定理的重要性,人们对它作出了各种各样不同的证明,这些证明体现了很多巧妙的想法.其中很多种证法都使用了数学归纳法,最常见的是法国著各数学家Cauchy提出的两种数学归纳法证法(即《高  相似文献   

5.
设ai∈R~ (i=1,2,…,n),则(a_1a_2a_3∧a_n)~(1/2)≤a_1 a_2 a_3 ∧ a_n/n(当且仅当a_1=a_2=a_3=…=a_n时取等号),并且(Ⅰ)如果这n个正数的和为定值S,那么当这几个正数相等时其积最大,等于(s/n)~n;(Ⅱ)如果这n个正数的积为定值P,那么当这几个正数相等时其和最小,等于nP~(1/n)。 以上是平均值不等式及其推论,高中数学中经常要运用它来求最值。在教学实践中本人深刻体会到,在运用均  相似文献   

6.
命题:若a,b,c,是正数,且a+b+c=1则: 1/a+b+1/b+c+1/c+a≥9/2这一不等式循环对称,耐人寻味,可推广出如下命题: 命题一:若a_1+a_2+…+a_n=1,a_i>0,(i=1,2,…,n,)则: 当且仅当a_1+a_2=a_2+a_3=…=a_(n-1)+a_n=a_n+a_1时,等号成立。命题二:若a_1+a_2+…+a_n=i,a_i>0 (i=1,2,…,n),则:  相似文献   

7.
在中学代数中,均值不等式指的是算术——几何平均值不等式:若a_i>0(i=1,2,…,n),则(a_1 a_2 … a_n)/n≥(a_1a_2…a_n,)~(n/(a_1a_2…a_n,))当且仅当a_1=a_2=…=a_n时,上式取等号(中学只讲二元、三元均值不等式)。  相似文献   

8.
n个非负实数a_1,…,a_n的算术平均数与几何平均数之间有这样的关系: (a_1+…+a_n)/n≥(a_1·…·a_n.)~(1/2) (1)其中“=”当且仅当a_1,=…=a_n时成立。这就是著名的算术——几何平均值定理。这个定理的证法很多,在此就不再赘述了。本文主要介绍算术——几何平均值定理的一个推广图式,以及它在证明不等式中的应用。为便于叙述,我们记  相似文献   

9.
算术——几何平均值不等式的内容是“若干正数的算术平均值不小于它们的几何平均值”。即 1/n(a_1+…a_2+…+a_n)≥(a_1a_2…a_n)~1/n。  相似文献   

10.
《高中数学第三册教学参考书》给出了算术——几何平均值不等式的两种归纳法证明。(其中一种是用反向归纳法)。但是,这两个证明都比较繁、从历史角度来看(参看[1]),用通常的数学归纳法来证明这一不等式也是较困难的事。因此,在这里我们介绍它的一些较简单的归纳法证明,供大家数学时选用,参考。算术——几何平均值不等式指: 定理当a_i,i=1,2,…,n,为正数时,有 (a_1 a_2 … a_n)/n≥(a_1a_2…a_n)~(1/n) (1)式中等号当且仅当a_1=a_2=…=a_n时成立, 为了方便,今后我们使用下列记号: A_n=(a_1 a_2 … a_n)/n,G_n=(a_1a_2…a_n)~(1/n) 当a_1=a_2=…=a_n时,(1)式中等号成立是显然的。故下面我们只须证明,当a_1,a_2,…,a_n不全相等时,必有A_n>G_n,即达目的。  相似文献   

11.
当a_1,a_2,…,a_n为正实数时,有 1/n sum from i=1 to n(a_i~n)≥multiply from i=1 to n(a_i)当且仅当a_1=a_2=…=a_n时取等号。事实上,该不等式可用(sum from i=1 to n(1/n)a_i)~n分隔,即(1/n)sum from i=1 to n(a_i~n)≥((1/n)sum from i=1 to n(a_i))~n≥multiply from i=1 to n(a_i)当且仅当a_1=a_2=…=a_n时取等号。  相似文献   

12.
<正>一、数列本身各部分知识的综合例1已知各项均为正数的数列{a_n}的前n项和为S_n,且满足S_1>1,6S_n=(a_n+1)(a_n+2),n∈N_+,求{a_n}的通项公式。解析:利用n≥2时S_n-S_(n-1)=a_n将已知条件6S_n=(a_n+1)(a_n+2),n∈N+转化为a_n与a_(n-1)之间的关系。由a_1=S_1=1/6(a_1+1)(a_1+2),解得a_1=1或a_1=2,由假设a_1=S_1>1,因此a_1=2。又由a_(n+1)=S_n+1-  相似文献   

13.
在应用初等方法,求如下类型的函数y(x)=sum from i=1 to ∞(1/n)a_ix~k_i……(1)(n为不小于2的自然数,a_i>O,x>0,K_i为非零整数且sum from i=1 to ∞(1/n)K_i=0的值域时,因sum from i=1 to ∞(1/n)K_i=0的诱发,极易上基本不等式a_1+a_2+…+a_n/n≥a_1a_2…a_n~(1/n)……(2)(n为不小于2的自然数,a_i均为正数;当且仅当a_1=a_2=…=a_n时,等式成立)的当!请看下面的例1:  相似文献   

14.
统编教材高中数学第三册“不等式的性质和证明”一章中提到:“n个(n是大于1的整数)正数的算术平均数不小于它们的几何平均数”,即“若a_1,a_2,a_3…a_n表示n个(n是大于1的整数)正实数,则仅当a_1=a_2=a_3=…=a_n时,等号才能适用。”这一重要不等式,在证明有关不等式时,经常直接引用,今举例说明。  相似文献   

15.
<正>求数列通项在高考中属于常考内容,本文归纳整理了几种方法,供参考.一、已知a_1和a_n=a_(n-1)+f(n)型,其中f(n)可求和例1已知数列{a_n}满足a_(n+1)=a_n+3n+2,且a_1=2,求a_n.解由a_(n+1)=a_n+3n+2知a_(n+1)-a_n=3n+2,a_n-a_(n-1)=3n-1.a_n=(a_n-a_(n-1))+(a_(n-1)-a_(n-2))+…+(a_2-a_1)+a_1=(3n-1)+(3n-4)+……+5+2  相似文献   

16.
高中代数第二册中有这样的两个不等式:已知a,b∈R~ ,并且a≠b,那么a~3 b~3>a~2b ab~2;a~5 b~5>a~3b~2 a~2b~3。本文将其推广为更一般的不等式。即下面的 [定理] 设a_1,a_2,…,a_n,m,a,k∈R~ ,且m=a (n-1)k,n≥2,则a_1~m a_2~m … a_n~m≥a_1~a a_2~k…a_n~k a_1~ka_2~aa_3~k…a_n~k …a_1~k…a_(n-1)~ka_n~a…(A)成立。(当且仅当a_1=a_2=…=a_n时取“=”号)。证:对n用数学归纳法。①当n=2时,m=a k,a_1~m a_2~m-(a_1~aa_2~k a_1~ka_2~a)=(a_1~a-a_2~a)(a_1~k-a_2~k)≥0,仅当a_1=a_2时取“=”号。命题成立。  相似文献   

17.
设n是大于1的自然数,a>0。易知a(?)1时,a-1与n-(1+a+…+a~(n-1))总是异号。所以, (a-1)[n-(1+a+…+a~(n-1))]≤0。即(a-1)(n-(1-a~n)/(1-a))≤0。整理,有a(n-a~(n-1))≤n-1。①显然,①式等号成立的充分必要是a=1。如果a_1,a_2,…,a_n是n个正数,在①中令a=(a_1/((a_1+a_2+…+a_n)/n)~(1/(n-1)),则有a_1~(1/(n-1))·(a_2+…+a_n)/(n-1)≤≤((a_1+a_2+…+a_n)/n)~(n~(n-1)),即((a_1+a_2+…+a_n)/n)~n≥≥a_1((a_1+a_2+…+a_n)/(n-1))~(n-1)。②再在①中令a=(a_2/(a_2+…+a_n)/(n-))~(1/(n-2)),重复上述步骤,并结合②,有  相似文献   

18.
<正>最值问题在高中数学中是经常遇到的一类题型,求最值的方法很多,但最常用的还是利用不等式规律,如均值不等式、柯西不等式等。下面就来谈谈利用柯西不等式求最值这种方法的应用。柯西不等式:设a_1,a_2,…,a_n与b_1,b_2,…,b_n是两组实数,则:(a_1b_1+a_2b_2+…+a_nb_n)2≤(a_12≤(a_12+a_22+a_22+…+a_n2+…+a_n2)(b_12)(b_12+b_22+b_22+…+b_n2+…+b_n2)。当向量(a_1,a_2,…,a_n)与(b_1,b_2,…,b_n)共线时,等号成立。例1设实数a,b,c,d,e满足:  相似文献   

19.
设a_1,a_2,…,a_n和b_1,b_2,…,b_n为两组实数,则有((sum from i=1 to n(a_ib_i))~2≤(sum from i=1 to n(a_i~2))(sum from i=1 to n(b_i~2)))。式中等号当且仅当a_1/b_1=a_2/b_2=…=a_n/b_n时成立。特别地,当b_1=b_2=…=b_n=1时,有 a_1~2 a_2~2 … a_n~2≥1/n(a_1 a_2 … a_n)~2。 以上第一个不等式称为柯西不等式,其证明方法很多,在此不再赘述。  相似文献   

20.
<正>柯西不等式设a_1,a_2,…,a_n与b_1,b_2,…,b_n是两组实数,则有(a_1~2+a_2~2+…+a_n~2)(b_1~2+b_2~2+…+b_n~2)≥(a_1b_1+a_2b_2+…+a_nb_n)~2,当向量(a_1,a_2,…,a_n)与向量(b_1,b_2,…,b_n)共线时,等号成立[1].对于柯西不等式在n=2和n=3时有下面常见的代数形式和几何形式.设A,B与x,y是两组实数,则有  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号