首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
正1"疑惑"的分析与解答文[1]的问题213有如下一道题:题目直线l过抛物线y2=2px(p0)的焦点F,且交抛物线于P,Q两点,由P,Q分别向准线引垂线PR,QS,垂足分别为R,S,如果|PF|=a,|QF|=b,M为RS的中点,则|MF|等于____.问题提出者给出了两种解法:解法1所得结果为|MF|  相似文献   

2.
1.问题提出直线l过点P(2,1),且分别交x轴、y轴的正半轴于点A,B,O为坐标原点.当|PA|·|PB|取最小值时,求直线l的方程.方法 1由题意可知,直线斜率存在且k<0,设l:y-1=k(x-2)(k<0),则A(2-1k,0),B(0,1-2k),∴|PA|·  相似文献   

3.
题目 如图1,已知双曲线C:x2/a2-y=1(a>0)的右焦点F,点A,B分别在C的两条渐近线上,AF⊥x轴,AB⊥OB,BF∥OA(O为坐标原点). (Ⅰ)求双曲线C的方程: (Ⅱ)过C上一点P(x0,y0)(y0≠0)的直线l:x0x/a2-y0y=1与直线AF相交于点M,与直线x=3/2相交于点N.证明:当点P在C上移动时,|MF|/|NF|恒为定值.并求此定值.(2014年高考数学江西理试题)  相似文献   

4.
1 问题的提出引例 已知椭圆 x249+y23 6=1上一点 M与椭圆两焦点 F1 、F2 连线的夹角∠ F1 MF2 =90°,试求 Rt△ F1 MF2 的面积 .我们把这种由椭圆或双曲线上的一点 M与其两个焦点 F1 、F2 所构成的△ F1 MF2 称作焦点三角形 .略解如下 :由 |MF1 |+|MF2 |=14与 |MF1 |2 +|MF2 |2 =5 2可得 |MF1 ||MF2 |= 72 ,所以 S△ F1MF2 =3 6.2 问题的推广我们把引例中的∠ F1 MF2 =90°改为∠ F1 MF2 =θ,并考虑分别求关于椭圆与双曲线的这种焦点三角形的面积 ,可得如下结论 .结论 1 如果椭圆 x2a2 +y2b2 =1( a >b >0 )上一点 M与两…  相似文献   

5.
1.知识要点 ①点M0到直线l的距离 设M0M⊥l ,且l的方向向量为a,M1为l上的一 点,并记M0到直线l的距离为d. 方法一:由平行四边形的面积 公式可得距离d=|a×|Ma|1M0| 方法二:若已知垂线M0M上 的某一向量n,则距离d就是M1M0在n上的射影长 度,即d=|n×|Mn|1M0| ②点M到平面α的距离 设P是平面α内一点,n是平面α的一个法向量, 则点M到平面α的距离 d=MN=|P|Mn·|n|. 证明:PM在n方向的射影的长度即M到平面α的 距离d. ∴d=|PM||cos |. 又cos…  相似文献   

6.
<正>贵刊2013年第三期刊登了安徽枞阳县会宫中学朱贤良老师的一篇文章,该文章对一道解几题进行了详尽的分析与解答,该题是:题目1一条直线l过抛物线y2=4px(p>0)的焦点F与抛物线交于P、Q两点,过P、Q两点分别向准线引垂线PR、QS,垂足R、S.如果|PF|=a,|QF|=b,M为RS的中点,则|MF|等于()  相似文献   

7.
题目如图1,已知双曲线C:x^2/a^2-y^2=1(a〉0)的右焦点为F,点A,B分别在C的两条渐近线上,AF⊥x轴,AB⊥OB,BF//OA(O为坐标原点). (1)求双曲线C的方程; (2)过C上一点P(x0,y0)(y0≠0)的直线l:x0x/a2-y0y=1与直线AF相交于点M,与直线x=3/2相交于点N,证明:当点P在C上移动时,|MF|/|NF|恒为定值,并求此定值.  相似文献   

8.
问题 :已知椭圆 x22 5 +y216 =1的左右焦点分别是 F1 ,F2 ,点 M在椭圆上 ,且 M到两焦点的距离之积为 16 ,则 M的坐标为    .题目本身并不难 ,由椭圆定义知 |MF1 |+|MF2 |=2 a=10 ,又由条件知 |MF1 |·|MF2 |=16 ,于是 |MF1 |=2 ,|MF2 |=8或|MF1 |=8,|MF2 |=2 .又椭圆的焦点到长轴两个端点的距离恰为 2与 8,因此 M是长轴的两个端点之一 ,于是 M的坐标应是 (- 5 ,0 )或 (5 ,0 ) .一个疑问 :长轴的两个端点固然满足条件 ,但除了这两个端点以外还有没有其它满足条件的点呢 ?上述解法并没有给出确切的答案 ,因此严格地说上述解法是…  相似文献   

9.
文 [1]运用解析法给出了圆锥曲线上点的四个有趣性质 .本文由一个平几命题得到这四个性质的统一简证 .定理 设直线 l1 与 l2 交于点 O,点 M,N是 l2 上的两个定点 ,且 |OM|=m,|ON |=n(m >n>0 ) ,l1 上的点 P对线段 MN的视角为α,则当 |OP|=mn时 ,α最大 .图 1证明 如图1,过点 M,N 作⊙ C切 l1 于点 K,则∠ MKN是 MN的圆周角 ,∠MPN是 MN的圆外角 .故∠MKN是 α的最大值 ,此时 ,由切割线定理知 |OK|2 =|OM|· |ON |=mn,即当 |OP|=mn时 ,α最大 .推论 设直线 l1 ⊥ l2 于点 O,点 M,N是l2 上的两个定点 ,且 |OM|=m,|ON |=n…  相似文献   

10.
题(2014山东理21)已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D,且有|FA|=|FD|.当点A的横坐标为3时,△ADF为正三角形.(Ⅰ)求C的方程;(Ⅱ)若直线l1∥l,且l1和C有且只有一个公共点E.(i)证明  相似文献   

11.
各种数学资料中 ,经常出现如下一类问题 :点 M为圆锥曲线上一动点 ,求它到圆锥曲线的一个焦点 F和平面上一定点 A的距离和的最值 .大多数学生对这类问题感到困难 ,不知如何入手 .本文利用圆锥曲线的定义巧妙地求出这类问题 .1 椭圆、双曲线、抛物线中的有关结论1.1 椭圆结论 1 设椭圆 x2a2 + y2b2 =1(a >b>0 )的左、右焦点分别为 F1 、F2 ,平面上一定点 Q(x0 ,y0 ) ,M为椭圆上任意一点 .(1)定点 Q(x0 ,y0 )在椭圆内部 (即 x20a2 + y20b2<1) ,则 | MF2 | + | MQ|的最小值是 2 a -| QF1 | ;最大值是 2 a + | QF1 | .(2 )定点 Q(x0 ,…  相似文献   

12.
一、回归定义例1已知点P(3,2)在抛物线y2=4x的内部,F是抛物线的焦点,在抛物线上求一点M,使|MP|+|MF|有最小值,并求此最小值.  相似文献   

13.
问题 直线l是过抛物线y^2=2px(p〉0)上一点P的切线.过该抛物线焦点F的直线FN⊥l,与直线l交于点N,与抛物线的准线交于点M.求证:直线MP平行于x轴.  相似文献   

14.
问题1:已知直线l上动点P及两定点A、B,试求f=|PA| |PB|的最值.讨论:1.点A、B在直线l的异侧.如图一,当P取AB与l的交点时(这样的P点只有一个),fmin=|AB|;f无最大值.2.点A、B在直线l的同侧.如图二,设A′为A关于l的对称点,当P点为A′B与l的交点时(这样的P点只有一个),fmin|PA| |PB|  相似文献   

15.
命题 :设点 P(x0 ,y0 ) ,⊙ O:x2 + y2 =r2 ,直线 l:x0 x + y0 y =r2则 1当点 P在圆上时 ,直线 l与⊙ O相切 ;2当点 P在圆外时 ,直线 l与⊙ O相交 ;3当点 P在圆内时 ,直线 l与⊙ O相离 .1 证明在直线 l上任取一点 Q(x,y) ,因为向量 OP =(x0 ,y0 ) ,OQ =(x,y)所以 OP .OQ =x0 x + y0 y =r2即 | OP| .| OQ| .cos∠ POQ =r2因为 l的一个方向向量 v=(-y0 ,x0 )所以 v.OP =0 OP⊥ l故圆心 O到 l的距离d =| OQ| .cos∠ POQ =r2| OP|| OP| >r时 ,d r;故命题为真 .2 画法已知点 P和⊙ …  相似文献   

16.
一、有关概念1.抛物线上任意两点之间的线段,叫做抛物线的弦, 经过抛物线的焦点的弦,称为焦点弦.垂直于轴的焦点弦叫做抛物线的正焦弦. 2.从抛物线上任一点M(x0,y0)到焦点F的距离r,称为抛物线的焦点半径(如图1).根据抛物线的定义,抛物线的焦点半径等于M到准线的距离d.即|MF|=r=d=x0 P/2.  相似文献   

17.
众所周知,过抛物线、椭圆、双曲线上一点的切线,可以根据它们各自的光学性质分别作出,作法也很简捷。那么,过这三种圆锥曲线上一点的切线,是否有统一的而且更为简捷的作法昵?回答是肯定的。本文旨在阐明这一作法,以飨读者。作法如下: 设圆锥曲线的一个焦点为F,相应的准线为l.点P是圆锥曲线上的任意一点(P不在过F的轴上)。连结PF,过F作直线MF垂直于PF交l于M。则直线PM就是过圆锥曲线上点P的切线,(如图) 对于本作法,以下对三种圆锥曲线分别予以证明。 1.抛物线设抛物线的方程为y~2=2px,则抛物线的焦点为  相似文献   

18.
题椭圆x2/a2+y2/b2=1(a>b>0)的两焦点是F1、F2,M为椭圆上与F1、F2不共线的任意一点,I为△MF1F2的内心,延长MI交线段F1F2于点N,则|MI|:|IN|的值等于( )(13届“希望杯”高二培训)  相似文献   

19.
纵观 2 0 0 3年和 2 0 0 4年两年的高考题 ,都有圆锥曲线的探索性问题 .因此 ,有必要加强圆锥曲线中研究性学习 ,以培养创新意识 .一、随圆【例 1】 如图 1,已知椭圆C :x24+y23 =1,F1 、F2 分别为左、右焦点 ,问能否在椭圆C上找到一点M ,使点M到右准线的距离|MN|图 1是 |MF1 |和|MF2 |的等比中项 ?若存在 ,求出M点的坐标 ;若不存在 ,说明理由 .探索 :先假设M点存在 ,再寻求结论成立的依据 ,或找出结论不成立的理由 .解 :设|MN| =t>0 ,则由椭圆第二定义得 :|MF2 |=e|MN|=et又由椭圆第一定义知 :|MF1 |=2a -|MF2 |…  相似文献   

20.
一、知识要点. ①点M0到直线l的距离设M0M⊥l,且l的方向向量为a,M1为l上的一点,并记M0到直线l的距离为c. 方法一由平行四边形的面积公式可得距离d=|a×(?)|/|a| 方法二若已知垂线M0M上的某一向量n,则距离d就是(?)在n上的射影长度,即d=|n·(?)|/|n|  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号