首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
平面几何中,圆中涉及的概念多、定理多、图形也比较复杂.许多同学解题时经常出现漏解和错解的问题,下面从三个方面试举几例.一、忽视概念的理解、遗漏定理的条件例1和半径分别为8cm和3cm的两个同心圆都相切的圆的圆心的轨迹是以同心圆的圆心为圆心,为半径的圆.简析没有理解“相切”这一概念,它有内切和外切两种情况.例2已知两条弦长为a和b,它们的弦心距分别为c和d,如c>d,则(B).(A)a>b(B)a<b;(C)a<b;(D)以上关系不确定.简析 忽视了定理中弦、弦心距关系是在“同圆”中这一重要条件.正确答案应选(D).二…  相似文献   

2.
在初中数学中有一些解问题,许多学生由于思维不够严密,常常出现漏解,其主要原因有如下类型:一、思维定势,导致漏解由于受思维定势的影响,导致解答不备漏解.例1 圆内两条平行弦的长分别为6cm 和8cm,则两弦之间的距离为___.分析条件中的两条平行弦,可在圆心的同旁或  相似文献   

3.
本文主要研究动圆与两定圆相切时,动圆心的轨迹问题.动圆与两定圆均相切,须分:动圆和定圆均内切、动圆和定圆均外切、动圆与定圆F1外切而与定圆F2内切、  相似文献   

4.
直线与圆是解析几何知识的基础,也是近几年高考的热点内容,因此,熟悉、掌握一些直线与圆综合问题十分必要. 例1已知圆C与圆C1:x2+y2-2x—=0外切,并且与直线l:x+ 3~(1/2)y=0相切与点P(3,-3~(1/2)).求此圆C的方程. 求圆C的方程要先确定圆心的坐标和半径的长.可设圆C的圆心为C(a,b),半径为r,因为圆C与圆C1相外切,且圆C1的半径为1,所以两圆的圆心距|CC1|=r+1.又因为与直线l相切与点P,所以圆C的圆心在过P点与直线l垂直的直线上,且圆心到直线l的距离等于半径r,依据圆的几何性质即可求出参数a,b、r 解:设所求圆的圆心为C(a,b),半径为r.  相似文献   

5.
初中几何第七章中,有些填充题由于思考问题不全面,往往会出现漏解. 例1 O_1和O_2的半径分别为2cm和4cm。当连心线O_1O_2的长度在(大于6cm)范围内取值时,两圆无公共点.  相似文献   

6.
王宗俊 《初中生》2012,(33):22-25
正圆的问题具有较强的隐蔽性和多样性,因考虑问题不全面常出现漏解.与圆相关的几何题,如果没有图形,往往存在多种可能,需分类讨论.一、平行弦与圆心的位置关系不确定产生的多解例1(2010年襄樊卷)已知⊙O的半径为13cm,弦AB∥CD,  相似文献   

7.
在解答初中物理竞赛题时,经常会出现用常规的方法难以求解题目,而不得不采用一些特殊的物理思想方法.对称割补法就是其中一例, 一对称割法 题1某人在科技制作时,要确定图1中阴影的均匀板的重心.挖去小圆的直径为R,两圆相切,那么阴影部分的重心在距圆心O的( )  相似文献   

8.
与具有不同位置关系的两定圆相离、相切、相交的动圆圆心轨迹随两定圆位置的变化而变化.当两定圆C1,C2相离时,若动圆C与圆C1,C2都外切或内切,则圆心C的轨迹为双曲线;若圆C与圆C1(C2)外切、与C2(C1)内切,则圆心C的轨迹为双曲线的右(左)支;当两定圆C1与C2外切时,动圆圆心C的轨迹是以定点C1,C2为焦点的双曲线;当两定圆相交时,动圆C与两相交定圆同时相切,动圆圆心C的轨迹仍是以定点C1,C2为焦点的双曲线(或其中一部分);当两定圆内切或两定圆内含时,动圆C的圆心的轨迹是以定圆圆心C1,C2为焦点的椭圆或一条射线.  相似文献   

9.
《圆与圆锥曲线的不解之缘》一文介绍了与具有不同位置关系的两个定圆都相切的动圆的圆心轨迹随两圆位置的变化而变化,但是,当两定圆相交时,动圆与两相交定圆同时相切的位置关系应该有三种情况:与两相交定圆同时外切;与两相交定圆同时内切;与两相交定圆中的一个内切,一个外切.动圆的圆心轨迹是双曲线(特殊情况是直线)或椭圆.同时,该文标题是圆与圆锥曲线的不解之缘,为了体现圆锥曲线的"完整性",本文补充了与定直线和定圆都相切的动圆的圆心轨迹是抛物线.这样我们就可以说双曲线、椭圆、圆、抛物线都能够从圆相切而生成.  相似文献   

10.
有些学生做几何题时,往往考虑不周密,片面的看问题,解答不完整,常常造成漏解错误.本文根据学生以圆的几例漏解错误进行剖析如下.例1 已知⊙O的半径为5cm,弦 AB∥CD,AB=6cm,CD=8cm,求 AB 和 CD 的距离.(义务教育《几何》第三册第94页第6题).  相似文献   

11.
圆锥曲线的定义是圆锥曲线一切几何性质的“根”与“源” ,是建立曲线方程的基础 ,许多涉及圆锥曲线的问题若能巧用定义求解 ,往往能化繁为简 ,达到简洁明快的效果 .1 求轨迹方程例 1 已知定点P(- 4 ,0 )和定圆Q :x2 + y2 =8x ,动圆M和圆Q相切 ,又经过定点P ,求圆心M的轨迹方程 .     图 1  分析 由于相切包含内切和外切 ,而两者的数量关系又不同 ,故须分类解之 .如图 1,Q(4,0 ) ,圆Q的半径为 4 ,设动圆圆心M(x ,y) ,其半径为r=|MP| .外切时 ,|MQ| =4 + |MP| ,即|MQ|-|MP| =4 .由双曲线定义知…  相似文献   

12.
在解答初中物理竞赛题时 ,经常会出现用常规的方法难以求解题目 ,而不得不采用一些特殊的物理思想方法。对称割补法就是其中一例 ,一 对称割法题 1 某人在科技制作时 ,要确定图 1中阴影的均匀板的重心。挖去小圆的直径为R ,两圆相切 ,那么阴影部分的重心在距圆心O的 (  )A  相似文献   

13.
一、填空题1 若半径为 5和 4的两个圆相交 ,且公共弦长为 6 ,则它们的圆心距d等于 . (山西省 )2 已知圆O1 和圆O2 外切 ,半径分别为 1cm和 3cm ,那么半径为 5cm且与圆O1 、圆O2 都相切的圆一共可以作出个 . (上海市 )3 以O为圆心的两个同心圆的半径分别是 9cm和 5cm ,⊙O′与这两个圆都相切 ,则⊙O′的半径是 .(安徽省 )4 在以O为圆心 ,直径分别为 10cm和 16cm的两个同心圆中有点P ,OP =4cm ,过点P分别作大圆的弦AB和小圆的弦CD ,则AB的最大值和CD的最小值的和为cm . (湖北省黄冈市 )5 如图 1,⊙…  相似文献   

14.
求曲线方程的常用思路和方法 1直译法 例1 求与y轴相切,并且和圆x^2+y^2-4x=0外切的网的圆心的轨迹方程. 解 由x^2+y^2-4x=0,有(x-2)^2+y^2=2^2.  相似文献   

15.
设圆心到直线的距离为d,圆的半径为r,当d&;lt;r时,直线与圆相交;当d=r时,直线与圆相切:当d&;gt;r时,直接与圆相离.对于有关代数题,适当构造直线与圆的方程,利用直线与圆的位置关系,往往出奇制胜,获得巧解。  相似文献   

16.
纵观近年来各省市中考试题,不难发现有关圆的两解问题经常出现.这类题目重在考查同学们对基础知识的掌握与运用情况.如果解题时考虑不严密,形成思维定势,就容易漏解.下面我将对圆中常见的两解问题举例分析,希望给同学们一点启示.一、点与圆的位置不确定【例1】在同一平面内,点P到⊙O的最长距离为8cm,最短距离2cm,则⊙O的半径为.思路提示:由于点P与⊙O的位置关系有如图1两种可能,所以⊙O的半径应为5cm或3cm.图1【例2】⊙O的直径为6cm,如果直线a上的一点C到点O的距离为3cm,则直线a与⊙O的位置关系是.思路提示:题中只涉及点C到圆心的距离,…  相似文献   

17.
在复习椭圆时,让学生做题目“一动圆与圆x^2+y^2+6x+5=0外切,同时与圆x^2+y^2-6x-91=0内切,求圆心的轨迹方程,并说明它是什么样的曲线.”(此题来自人教版高中《数学》第二册(上)E128例1).同时叫了A,B两位学生在黑板上板演,学生A得出正确结果,学生B因将题目错看为动圆同时与两定圆内切,得出不同的答案.  相似文献   

18.
两圆公切线长的计算,无论是外公切线长的计算还是内公切线长的计算,都归结为直角三角形的计算.计算外公切线长时,直角三角形由圆心距和两圆半径的差确定;计算内公切线长时,直角三角形由圆心距和两圆半径的和确定.辅助线的作法是:连结两圆过切点的半径,再过其中一圆的圆心作公切线的平行线,交另一圆的半径或其延长线于一点,从而构成以两圆圆心和这个交点为顶点的直角三角形,最后解这个直角三角形即可求得公切线的长.例1如图1,半径分别为TI和TZ的①OI与①0。相外切,圆,0距为20Cm,TZ-TI。urn,外公切线AB分别切两圆于A…  相似文献   

19.
在数学复习中,常碰到如下一组轨迹题:“根据椭圆、双曲线、抛物线的定义,说出下列动圆圆心的轨迹:(1)A是定圆内的一个定点,动圆过A且同定圆相切;(2)动圆与互相外离的两个定圆都相外切;(3)动圆与一定圆相切,又同x轴相切;(4)动圆在定半圆的内部且同这个半圆内切,又同直径相切。”这组轨迹题对于复习圆锥曲线的定义是很好的。如果把它适当地推广和引伸,就能使这组题发挥更大的作用,使学生开阔视野,提高研讨问题的能力,同时,还能活跃学生的思路,增强探求知识的兴趣。本文试对以上问题作如下探讨。我们把上述问题分别作为例一、例二、例三,为节  相似文献   

20.
与两定圆相切的动圆圆心轨迹涉及问题复杂,需要构建技术环境以帮助学生认识问题的本质;在详解问题情境的画板构造后,分情况进行详细探究,并得出结论:当动圆与两定圆同时内切或外切时,圆心轨迹为长轴长(或实轴长)为半径之差的椭圆(或双曲线);当动圆与一定圆外切一定圆内切时,圆心轨迹为长轴长(或实轴长)为半径之和的椭圆(或双曲线).而应用技术在帮助学生认知的同时,也为数学课堂转型提供了一重要方向.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号