首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Abstract

The inflammatory responsive cytokine interleukin-6 (IL-6) helps regulate immune responses to exercise. Evidence suggests that increases in IL-6 are related to exercise duration and intensity. However, the moderating effect of sex and underlying mediators have received limited attention. We compared plasma IL-6 responses to two cycling tasks with a resting control in young male (n = 12) and female (n = 12) recreationally active adults. Both 45 min tasks comprised an incremental test, either maximal or submaximal, followed by steady-state exercise at 55% peak power output. Interleukin-6 was elevated above baseline immediately after the maximal but not the submaximal task. Compared with the control condition, IL-6 was increased at 30 and 60 min after both exercise tasks. The IL-6 response was greater in women than men at 60 min after maximal exercise. Cortisol increased in both tasks compared with the control condition, the increase being greater after maximal than submaximal exercise. No associations were found between IL-6 responses and cortisol, heart rate, fitness or body mass index. The results show that 45 min of moderate-intensity exercise can increase IL-6 and suggest that the inclusion of maximal effort may accelerate this response. The finding that women showed a greater IL-6 response to maximal exercise may reflect a gender dimorphism in the immune response to stress.  相似文献   

2.
Following fixed-duration exercise of submaximal intensity, caffeine ingestion is associated with an attenuation of the exercise-induced decline in N-formyl-methionyl-phenyl-alanine (f-MLP) stimulated neutrophil oxidative burst. However, the response following high-intensity exhaustive exercise is unknown. Nine endurance-trained male cyclists ingested 6 mg caffeine or placebo per kilogram of body mass 60 min before cycling for 90 min at 70% of maximal oxygen consumption (VO2max) and then performing a time-trial requiring an energy expenditure equivalent to 30 min cycling at 70% maximum power output. Time-trial performance was 4% faster in the caffeine than in the placebo trial (P = 0.043). Caffeine was associated with an increased plasma adrenaline concentration after 90 min of exercise (P = 0.046) and immediately after the time-trial (P = 0.02). Caffeine was also associated with an increased serum caffeine concentration (P < 0.01) after 90 min of exercise and immediately after the time-trial, as well as 1 h after the time-trial. However, the f-MLP-stimulated neutrophil oxidative burst response fell after exercise in both trials (P = 0.002). There was no effect of caffeine on circulating leukocyte or neutrophil counts, but the lymphocyte count was significantly lower on caffeine (20%) after the time-trial (P = 0.003). Our results suggest that high-intensity exhaustive exercise negates the attenuation of the exercise-induced decrease in neutrophil oxidative burst responses previously observed when caffeine is ingested before exercise of fixed duration and intensity. This may be associated with the greater increase in adrenaline concentration observed in the present study.  相似文献   

3.
Exercise is a potent stimulus for the release of human growth hormone (hGH), but the time course of the hGH response to sprint exercise has not been studied. The aim of the present study was to determine the time course of the hGH response to a 6 s and a 30 s maximal sprint on a cycle ergometer. Nine males completed two trials, on one occasion performing a single 6 s sprint and on another a single 30 s sprint. They then rested on a couch for 4 h while blood samples were obtained. Three of the participants completed a further control trial involving no exercise. Metabolic responses were greater after the 30 s sprint than after the 6 s sprint. The highest measured mean serum hGH concentrations after the 30 s sprint were more than 450% greater than after the 6 s sprint (18.5 +/- 3.1 vs 4.0 +/- 1.5 microg l(-1), P < 0.05). Serum hGH also remained elevated for 90-120 min after the 30 s sprint compared with approximately 60 min after the 6 s sprint. There was a large inter-individual variation in the hGH response to the 30 s sprint. In the control trial, serum hGH concentrations were not elevated above baseline at any time. It would appear that the duration of a bout of maximal sprint exercise determines the magnitude of the hGH response, although the mechanism for this is still unclear.  相似文献   

4.
Exercise is a potent stimulus for the release of human growth hormone (hGH), but the time course of the hGH response to sprint exercise has not been studied. The aim of the present study was to determine the time course of the hGH response to a 6 s and a 30 s maximal sprint on a cycle ergometer. Nine males completed two trials, on one occasion performing a single 6 s sprint and on another a single 30 s sprint. They then rested on a couch for 4 h while blood samples were obtained. Three of the participants completed a further control trial involving no exercise. Metabolic responses were greater after the 30 s sprint than after the 6 s sprint. The highest measured mean serum hGH concentrations after the 30 s sprint were more than 450% greater than after the 6 s sprint (18.5 - 3.1 vs 4.0 - 1.5 w g·l -1 , P ? 0.05). Serum hGH also remained elevated for 90-120 min after the 30 s sprint compared with ~ 60 min after the 6 s sprint. There was a large inter-individual variation in the hGH response to the 30 s sprint. In the control trial, serum hGH concentrations were not elevated above baseline at any time. It would appear that the duration of a bout of maximal sprint exercise determines the magnitude of the hGH response, although the mechanism for this is still unclear.  相似文献   

5.
The purpose of this investigation was to study the effects of an acute bout of aerobic exercise on state anxiety of women while controlling for iron status (hemoglobin and serum ferritin). Participants were 24 active women, ages 18-20 years (n = 12) and 35-45 years (n = 12). In addition to a nonexercise control condition, participants completed one exercise bout at 60% maximal oxygen uptake (VO2max) and one at 80% VO2max. Each exercise session consisted of a 33-min bout in which participants exercised at their target intensities for a 20-min segment. Immediately before each exercise trial, participants were given the Spielberger State Anxiety Inventory (SAI). The SAI was again administered immediately following the exercise session and at 30, 60, and 90 min postexercise. Data were analyzed using an Age x Intensity x Time (2 x 3 x 5) repeated measures analysis of covariance (ANCOVA) with iron status serving as the covariate. The ANCOVA on state anxiety yielded significant effects for time (p < .0001, eta2(p) = .48), the Intensity x Time interaction (p = .0006, eta2(p) = .19), and the Intensity x Age interaction (p = .04, eta2(p) = .15). All three exercise conditions (including control) showed a decline in state anxiety across time, but the 80% VO2max condition showed a sharper decline. Intensity of exercise conditions did not differ in state anxiety at baseline or immediately after exercise, but a difference favoring the 80% VO2max condition over the control condition emerged at 30 min postexercise. After controlling for iron status, older women who exercised at 80% VO2max exhibited lower SAI scores compared to the control condition.  相似文献   

6.
Abstract

The consumption of carbohydrate and protein after exercise improves muscle glycogen synthesis and attenuates the decrease in immune function seen with endurance-type exercise. However, the impact of consuming commercially available beverages on glycaemic, insulinaemic, and immune responses during recovery from rowing training has not been investigated. Twenty-one male and female rowers completed four trials in a randomized order. Commercially available beverages were consumed in volumes providing 1.2 g carbohydrate · kg?1 body mass, upon completion of ~90 min of rowing at 60–70% maximum oxygen uptake, interspersed with up to five 5-min intervals at or above race pace. Blood samples were taken before and 15, 30, 45, 60, 90, and 120 min after consumption of the beverages for analysis of insulin and glucose and at 90 and 360 min for the analysis of cortisol and interleukin-6 (IL-6). The high-carbohydrate sports beverage and the meal replacement beverage produced a significantly larger (P<0.05) glucose incremental area under the curve than the sports-specific meal replacement beverage or the flavoured milk beverage. The high-carbohydrate sports beverage and the sports-specific meal replacement beverage produced a significantly lower (P<0.05) insulin incremental area under the curve than the meal replacement beverage or the flavoured milk beverage. The meal replacement beverage produced both a high glycaemic and insulinaemic response, suggesting that it may produce a higher rate of muscle glycogen resynthesis. There was a significant interaction between time and beverage for IL-6 (P=0.001), but not for cortisol (P=0.779). These results indicate that the impact of post-exercise nutrition on immune response may not be exclusively mediated by an attenuation of the cortisol response.  相似文献   

7.
The purpose of the present study was to assess fitness and running performance in a group of recreational runners (men, n = 18; women, n = 13). 'Fitness' was determined on the basis of their physiological and metabolic responses during maximal and submaximal exercise. There were strong correlations between VO2 max and treadmill running speeds equivalent to blood lactate concentrations of 2 mmol l-1 (V-2 mM) or 4 mmol l-1 (V-4 mM), 'relative running economy' and 5 km times (r = -0.84), but modest and non-significant correlations between muscle fibre composition and running performance. The results of the submaximal exercise tests suggested that the female runners were as well trained as the male runners. However, the men still recorded faster 5 km times (19.20 +/- 1.97 min vs 20.97 +/- 1.70 min; P less than 0.05). Therefore the of the present study suggest that the faster performance times recorded by the men were best explained by their higher VO2 max values, rather than their training status per se.  相似文献   

8.
Sympathoadrenal and parasympathetic responses to exercise   总被引:1,自引:0,他引:1  
Exhaustive exercise is associated with a persistent sensation of weakness and sometimes nausea suggesting abdominal vagal activity. We measured plasma indices of sympathoadrenal (adrenaline, noradrenaline, dopamine) and vagal (pancreatic polypeptide) activity before, during and after submaximal and maximal exercise in healthy young subjects. Plasma adrenaline, noradrenaline and dopamine increased to 8.5 (range 7.4-40.5), 48.0 (32.3-100.5) and 1.8 (1.2-6.6) nmol 1-1 respectively (n = 5), during maximal exercise and decreased towards control values within 15 min of rest. Pancreatic polypeptide (n = 10) increased only during maximal exercise and reached its highest value, 48 (21-145) pmol 1-1, after exertion. The results conform to an increase in sympathetic activity during exercise and a persistent vagal activity after intense exercise which could contribute to the sensation of weakness.  相似文献   

9.
The aim of this study was to determine the influence of type of warm-up on metabolism and performance during high-intensity exercise. Eight males performed 30 s of intense exercise at 120% of their maximal power output followed, 1 min later, by a performance cycle to exhaustion, again at 120% of maximal power output. Exercise was preceded by active, passive or no warm-up (control). Muscle temperature, immediately before exercise, was significantly elevated after active and passive warm-ups compared to the control condition (36.9 +/- 0.18 degrees C, 36.8 +/- 0.18 degrees C and 33.6 +/- 0.25 degrees C respectively; mean +/- sx) (P< 0.05). Total oxygen consumption during the 30 s exercise bout was significantly greater in the active and passive warm-up trials than in the control trial (1017 +/- 22, 943 +/- 53 and 838 +/- 45 ml O2 respectively). Active warm-up resulted in a blunted blood lactate response during high-intensity exercise compared to the passive and control trials (change = 5.53 +/- 0.52, 8.09 +/- 0.57 and 7.90 +/- 0.38 mmol x l(-1) respectively) (P < 0.05). There was no difference in exercise time to exhaustion between the active, passive and control trials (43.9 +/- 4.1, 48.3 +/- 2.7 and 46.9 +/- 6.2 s respectively) (P= 0.69). These results indicate that, although the mechanism by which muscle temperature is elevated influences certain metabolic responses during subsequent high-intensity exercise, cycling performance is not significantly affected.  相似文献   

10.
The aim of this study was to determine the influence of type of warm-up on metabolism and performance during high-intensity exercise. Eight males performed 30 s of intense exercise at 120% of their maximal power output followed, 1 min later, by a performance cycle to exhaustion, again at 120% of maximal power output. Exercise was preceded by active, passive or no warm-up (control). Muscle temperature, immediately before exercise, was significantly elevated after active and passive warm-ups compared to the control condition (36.9 - 0.18°C, 36.8 - 0.18°C and 33.6 - 0.25°C respectively; mean - sx ) ( P ? 0.05). Total oxygen consumption during the 30 s exercise bout was significantly greater in the active and passive warm-up trials than in the control trial (1017 - 22, 943 - 53 and 838 - 45 ml O 2 respectively). Active warm-up resulted in a blunted blood lactate response during high-intensity exercise compared to the passive and control trials (change = 5.53 - 0.52, 8.09 - 0.57 and 7.90 - 0.38 mmol· l -1 respectively) ( P ? 0.05). There was no difference in exercise time to exhaustion between the active, passive and control trials (43.9 - 4.1, 48.3 - 2.7 and 46.9 - 6.2 s respectively) ( P = 0.69). These results indicate that, although the mechanism by which muscle temperature is elevated influences certain metabolic responses during subsequent high-intensity exercise, cycling performance is not significantly affected.  相似文献   

11.
Abstract

Following fixed-duration exercise of submaximal intensity, caffeine ingestion is associated with an attenuation of the exercise-induced decline in N-formyl-methionyl-phenyl-alanine (f-MLP) stimulated neutrophil oxidative burst. However, the response following high-intensity exhaustive exercise is unknown. Nine endurance-trained male cyclists ingested 6 mg caffeine or placebo per kilogram of body mass 60 min before cycling for 90 min at 70% of maximal oxygen consumption ([Vdot]O2max) and then performing a time-trial requiring an energy expenditure equivalent to 30 min cycling at 70% maximum power output. Time-trial performance was 4% faster in the caffeine than in the placebo trial (P = 0.043). Caffeine was associated with an increased plasma adrenaline concentration after 90 min of exercise (P = 0.046) and immediately after the time-trial (P = 0.02). Caffeine was also associated with an increased serum caffeine concentration (P < 0.01) after 90 min of exercise and immediately after the time-trial, as well as 1 h after the time-trial. However, the f-MLP-stimulated neutrophil oxidative burst response fell after exercise in both trials (P = 0.002). There was no effect of caffeine on circulating leukocyte or neutrophil counts, but the lymphocyte count was significantly lower on caffeine (20%) after the time-trial (P = 0.003). Our results suggest that high-intensity exhaustive exercise negates the attenuation of the exercise-induced decrease in neutrophil oxidative burst responses previously observed when caffeine is ingested before exercise of fixed duration and intensity. This may be associated with the greater increase in adrenaline concentration observed in the present study.  相似文献   

12.
In this study, we wished to determine whether the changes in metabolism observed during exercise in the cold are associated with changes in interleukin-6 (IL-6) and/or its soluble receptors. Eight healthy male participants performed 1 h of cycling exercise at 70% VO2max in a control (20 degrees C) and cold (0 degrees C) environment. Plasma concentrations of IL-6, soluble IL-6 receptor (sIL-6R), and sgp130 were measured before exercise, at 30 and 60 min of exercise, and 60 min after exercise. Substrate oxidation was estimated through measures of pulmonary gas exchange recorded between 50 and 55 min of cycling. Exercise in the cold resulted in an increase (P < 0.05) in carbohydrate oxidation (mean 2.58 g.min(-1), s = 0.49 at 20 degrees C vs. 2.85 g.min(-1), s = 0.58 at 0 degrees C) and a decrease (P < 0.05) in fat oxidation (0.55 g.min(-1), s = 0.17 at 20 degrees C vs. 0.38 g.min(-1), s = 0.16 at 0 degrees C) compared with the control trial. Interleukin-6 concentrations were elevated (P < 0.05) after 60 min of exercise in both the cold and control trials, with no differences between trials at any instant. Neither sIL-6R nor sgp130 was affected by exercise or the environment. The alterations in carbohydrate and fat utilization during 1 h of exercise in the cold are not paralleled by changes in plasma concentrations of IL-6 or its soluble receptors.  相似文献   

13.
Caffeine consumption prior to athletic performance has become commonplace. The usual dosage is approximately 200 mg, a level of caffeine ingestion equivalent to two cups of brewed coffee. This study was designed to examine the effects of a common level of caffeine ingestion, specifically 200 mg, on metabolism during submaximal exercise performance in five males. The subjects performed two 60-min monitored treadmill workouts at 60% maximal heart rate during a 2-week period. The subjects were randomly assigned, double-blind to receive a caffeine or placebo capsule 60 min prior to exercise. Testing was performed in the afternoon following a midnight fast. Venous blood was withdrawn pre-exercise, every 15 min during the workout, and 10 min after recovery. Blood was analysed for free fatty acid, triglycerides, glucose, lactic acid, haemoglobin and haematocrit. The respiratory exchange ratio (R), perceived exertion (RPE) and oxygen uptake were measured every 4 min during exercise. An examination of the data with repeated-measures ANOVA revealed no significant differences between the two groups. Within the limitations of the study, it was concluded that 200 mg caffeine failed to affect metabolism during 60 min submaximal exercise.  相似文献   

14.
We tested the hypothesis that work-matched supramaximal intermittent warm-up improves final-sprint power output to a greater degree than submaximal constant-intensity warm-up during the last 30?s of a 120-s supramaximal exercise simulating the final sprint during sports events lasting approximately 2?min. Ten male middle-distance runners performed a 120-s supramaximal cycling exercise consisting of 90?s of constant-workload cycling at a workload corresponding to 110% maximal oxygen uptake (VO2max) followed by 30?s of maximal-effort cycling. This exercise was preceded by 1) no warm-up (Control), 2) a constant-workload cycling warm-up at a workload of 60%VO2max for 6?min and 40?s, or 3) a supramaximal intermittent cycling warm-up for 6?min and 40?s consisting of 5 sets of 65?s of cycling at a workload of 46%VO2max?+?15?s of supramaximal cycling at a workload of 120%VO2max. By design, total work was matched between the two warm-up conditions. Supramaximal intermittent and submaximal constant-workload warm-ups similarly increased 5-s peak (590?±?191 vs. 604?±?215W, P?=?0.41) and 30-s mean (495?±?137 vs. 503?±?154W, P?=?0.48) power output during the final 30-s maximal-effort cycling as compared to the no warm-up condition (5-s peak: 471?±?165W; 30-s mean: 398?±?117W). VO2 during the 120-s supramaximal cycling was similarly increased by the two warm-ups as compared to no-warm up (P?≤?0.05). These findings show that work-matched supramaximal intermittent and submaximal constant-workload warm-ups improve final sprint (~30?s) performance to similar extents during the late stage of a 120-s supramaximal exercise bout.  相似文献   

15.
We investigated how cytokines are implicated with overtraining syndrome (OTS) in athletes during a prolonged period of recovery. Plasma IL-6, IL-10, TNF-α, IL-1β, adipokine leptin, and insulin like growth factor-1 (IGF-1) concentrations were measured in overtrained (OA: 5 men, 2 women) and healthy control athletes (CA: 5 men, 5 women) before and after exercise to volitional exhaustion. Measurements were conducted at baseline and after 6 and 12 months. Inflammatory cytokines did not differ between groups at rest. However, resting leptin concentration was lower in OA than CA at every measurement (P < 0.050) but was not affected by acute exercise. Although IL-6 and TNF-α concentrations increased with exercise in both groups (P < 0.050), pro-inflammatory IL-1β concentration increased only in OA (P < 0.050) and anti-inflammatory IL-10 was greater in CA (P < 0.001). In OA, exercise-related IL-6 and TNF-α induction was enhanced during the follow-up (P < 0.050). IGF-1 decreased with exercise in OA (P < 0.050); however, no differences in resting IGF-1 were observed. In conclusion, low leptin level at rest and a pro-inflammatory cytokine response to acute exercise may reflect a chronic maladaptation state in overtrained athletes. In contrast, the accentuation of IL-6 and TNF-α responses to acute exercise seemed to associate with the progression of recovery from overtraining.  相似文献   

16.
运动训练对应激大鼠血清皮质酮和白细胞介素1β的影响   总被引:3,自引:0,他引:3  
为探讨中小负荷的运动对心理应激大鼠血清皮质酮和IL-1β含量的影响。对大鼠进行为期8周的不同负荷运动训练,并在运动后期施加2周的心理应激,测定大鼠血清中皮质酮和IL-1β含量。结果显示:①经过2周心理应激后,大鼠血清中IL-1β含量显著低于对照组,而皮质酮含量显著高于对照组;②经过8周运动训练后,30min运动组和60min运动组IL-1β含量均显著高于对照组,皮质酮含量显著低于对照组;同时30min运动+应激组和60min运动+应激组大鼠血清中IL-1β含量显著高于应激组,皮质酮含量明显低于应激组。说明运动训练可以降低心理应激反应程度,减少内源性皮质酮释放,使血液中IL-1β含量升高,维持机体在应激状态下的免疫功能的稳定。  相似文献   

17.
In this study, we examined the glycaemic and fuel oxidation responses to alterations in the timing of a low glycaemic index carbohydrate and 75% reduced insulin dose, prior to running, in type 1 diabetes individuals. After carbohydrate (75 g isomaltulose) and insulin administration, the seven participants rested for 30 min, 60 min, 90 min or 120 min (conditions 30MIN, 60MIN, 90MIN, and 120MIN, respectively) before completing 45 min of running at 70% peak oxygen uptake. Carbohydrate and lipid oxidation rates were monitored during exercise and blood glucose and insulin were measured before and for 3 h after exercise. Data were analysed using repeated-measures analysis of variance. Pre-exercise blood glucose concentrations were lower for 30MIN compared with 120MIN (P < 0.05), but insulin concentrations were similar. Exercising carbohydrate and lipid oxidation rates were lower and greater, respectively, for 30MIN compared with 120MIN (P < 0.05). The drop in blood glucose during exercise was less for 30MIN (3.7 mmol · l(-1), s(x) = 0.4) compared with 120MIN (6.4 mmol · l(-1), s(x) = 0.3) (P = 0.02). For 60 min post-exercise, blood glucose concentrations were higher for 30MIN compared with 120MIN (P < 0.05). There were no cases of hypoglycaemia in the 30MIN condition, one case in the 60MIN condition, two in the 90MIN condition, and five in the 120MIN condition. In conclusion, a low glycaemic index carbohydrate and reduced insulin dose administered 30 min before running improves pre- and post-exercise blood glucose responses in type 1 diabetes.  相似文献   

18.
This study assessed the effectiveness of a 6-week, high-intensity, games-based intervention on physiological and anthropometric indices of health, in normal weight (n = 26; 32.5 ± 8.9 kg) and obese (n = 29; 49.3 ± 8.9 kg) children (n = 32 boys, 23 girls), aged 8–10 years. Children were randomised into an exercise or control group. The exercise group participated in a twice-weekly, 40 min active games intervention, alongside their usual school physical education classes. The control group did not take part in the intervention. Before and after the intervention, participants completed both a maximal and submaximal graded exercise test. The submaximal exercise test comprised of a 6 min, moderate- and 6 min heavy-intensity bout, interspersed with a 5 min recovery. The exercise group demonstrated improvements in maximal oxygen uptake (51.4 ± 8.5 vs 54.3 ± 9.6 ml · kg?1 · min?1) and peak running speed (11.3 ± 1.6 vs 11.9 ± 1.6 km · h?1), and a reduction in the oxygen cost of submaximal exercise between assessments (< .05). A decrease in waist circumference and increase in muscle mass were observed between assessments for the obese participants randomised to the intervention (both < .05). This study demonstrates that a short-term, high-intensity games intervention may elicit positive changes in physiological and anthropometric indices of health in normal weight and obese children.  相似文献   

19.
Non-exercise equations developed from self-reported physical activity can estimate maximal oxygen uptake (VO(2)max) as well as submaximal exercise testing. The International Physical Activity Questionnaire (IPAQ) is the most widely used and validated self-report measure of physical activity. This study aimed to develop and test a VO(2)max estimation equation derived from the IPAQ-Short Form (IPAQ-S). College-aged males and females (n = 80) completed the IPAQ-S and performed a maximal exercise test. The estimation equation was created with multivariate regression in a gender-balanced subsample of participants, equally representing five levels of fitness (n = 50) and validated in the remaining participants (n = 30). The resulting equation explained 43% of the variance in measured VO(2)max (SEE = 5.45 ml·kg(-1)·min(-1)). Estimated VO(2)max for 87% of individuals fell within acceptable limits of error observed with submaximal exercise testing (20% error). The IPAQ-S can be used to successfully estimate VO(2)max as well as submaximal exercise tests. Development of other population-specific estimation equations is warranted.  相似文献   

20.
The aim of this study was to determine the effect of carbohydrate (CHO) versus placebo (PLA) beverage consumption on the immune and plasma cortisol responses to a soccer-specific exercise protocol in 8 university team soccer players. In a randomized, counterbalanced design, the players received carbohydrate or placebo beverages before, during and after two 90 min soccer-specific exercise bouts (3 days apart) designed to mimic the activities performed and the distance covered in a typical soccer match. Blood and saliva samples were collected before, during and after the exercise protocol. Plasma lactate concentration increased to approximately 4 mmol x l(-1) at 45 and 90 min of exercise in both treatments (P<0.01). Plasma glucose concentration was significantly lower after 90 min of exercise with ingestion of the placebo than the carbohydrate (PLA: 4.57+/-0.12 mmol x l(-1); CHO: 5.49+/-0.11 mmol x l(-1); P<0.01). The pattern of change in plasma cortisol, circulating lymphocyte count and saliva immunoglobulin A secretion did not differ between the carbohydrate and placebo trials. Blood neutrophil counts were 14% higher 1 h after the placebo trial than the carbohydrate trial (PLA: 4.8+/-0.5x10(9) cells x l(-1); CHO: 4.2+/-0.5x10(9) cells x l(-1); P = 0.06), but the treatment had no effect on the degranulation response of blood neutrophils stimulated by bacterial lipopolysaccharide. We conclude that, although previous studies have shown that carbohydrate feeding is effective in attenuating immune responses to prolonged continuous strenuous exercise, the same cannot be said for a soccer-specific intermittent exercise protocol. When overall exercise intensity is moderate, and changes in plasma glucose, cortisol and immune variables are relatively small, it would appear that carbohydrate ingestion has only a minimal influence on the immune response to exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号