首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
初中数学新教材,经常出现开放性与探索性的问题,在近几年的中考试题中,"二等分"某些图形的面积题目屡见不鲜.这类题目解答的关键是:要熟练掌握常见规则图形的"等积线".一、三角形的等积线(二分线)探究如图1,直线a∥b,S△BCE=S△BCF(同底等高),易得S△BOE=S△COF.如图2,中线AD所在的  相似文献   

2.
初中数学课本的习题,具有应用性强、针对性强、迁移性强等特点,立足课堂、课本,充分发挥课本习题的作用,是提高课堂效率的重要途径;中考命题有一个规律,注重从课本习题中寻找素材,精雕细琢产生考题.研究解题方法,发现解题规律,寻找最佳解法,可培养学生的学习兴趣.题目:(人教版数学课本八(下)第91页第8题)如图1,直线l1//l2,△ABC与△DBC的面积相等吗?你还能画出一些与△ABC面积相等的三角形吗?根据等底等高的三角形面积相等,我们很容易证明:S△ABC=S△DBC,  相似文献   

3.
三角形的三条中线相交于一点,这一点叫做三角形的重心.三角形的重心到顶点的距离是它到对边中点距离的2倍.以三角形重心的定义和性质为依据,可推导出三条结论:推论1三角形的三条中线将三角形分成面积相等的六部分.如图1,△ABC的三条中线AD,BE,GF交于点G,则△ABC被分成面积相等的六部分,即S1=S2  相似文献   

4.
<正>一、应用勾股定理探究图形面积例1如图1,在直线l上有三个正方形,面积分别为a,b,c,若a=5,c=11,则最大正方形的面积b是多少?思路点拨:根据“AAS”可证Rt△ABC≌Rt△BED,则BC=ED,由勾股定理易得b=a+c=16.变式1:如图2,以Rt△ABC的三边为斜边,分别向外作等腰直角三角形BFC、等腰直角三角形AHC、等腰直角三角形AEB,面积分别为S1,S2,S3,则S1+S2=S3.(请同学们尝试证明)  相似文献   

5.
1 过三角形的顶点作直线等分三角形的面积 由于"等(同)底等高(同)"三角形的面积相等,所以过三角形的顶点和对边中点所作的直线等分三角形的面积.如图1所示,直线AF、BE、CD都分别平分△ABC的面积.  相似文献   

6.
利用三角形的同底等高将一个三角形转化成等面积的三角形,这是很有用的等积转化模型.如图,已知直线m∥n,点A,B在直线n上,点C,D在直线m上,S△ABC=S△ABD.通常借助平行线,构造同底等高的模型,灵活进行等积转化,巧妙解决实际问题.下面提供几例,以飨读者.  相似文献   

7.
结论若两个三角形等底等高,则这两个三角形面积相等.  相似文献   

8.
<正>本文现将人教版八年级(下)中的一道习题及其逆命题在中考中的应用介绍如下,供初中师生教与学时参考.题目如图1,直线l1∥l2,△ABC与△DBC的面积相等吗?你还可以画出一些与△ABC面积相等的三角形吗?解因为l_1∥l_2,所以S_(△ABC)=S_(△DBC)(同底等高的三角形面积相等).还可以画出与△ABC面积相等的三角形若干个,只要同底BC,第三个顶点在  相似文献   

9.
1 过三角形的顶点作直线等分三角形的面积由于“等 (同 )底等高 (同 )”三角形的面积相等 ,所以过三角形的顶点和对边中点所作的直线等分三角形的面积 .如图 1所示 ,直线AF、BE、CD都分别平分△ABC的面积 .2 过三角形一边上任意一点作直线等分三角形的面积如图 1,假设过直线AC上的任意一点作直线等分△ABC的面积 ,如果所经过的点在线段AE上 ,那么所作的直线一定与线段BF相交 ;同理 ,如果经过的点在线段EC上 ,那么所作的直线一定与线段BD相交 .下面以过线段AE上的任意一点G为例作出其等分△ABC的面积的直线GH .作法  ( 1)连结…  相似文献   

10.
文[1]给出了圆锥曲线的一个性质:性质已知直线,是圆锥曲线Γ的焦点F对应的准线,过,上一点P作曲线r两条切线PA,.PB,A,B为切点,过PF的中点D且平行于直线,的直线l′与PA,PB分别交于点M,N,记△AFM,△PMN,△BFN的面积分别为S△AFM,S△PFM,S△BFM,则S△AFM2=S△AFM·S△BFM.笔者通过探究,发现结论不限于准线和焦点的  相似文献   

11.
在文[1]中阐述了用"三角形等积定理"(等底等高的两个三角形面积相等)作任意三角形面积平分线(使面积平分为二的直线)的方法和过任意四边形一顶点作其面积平分线的方法.阅此文后,经过进一步探索,得出了从任意位置作任意凸多边形的面积平分线的很简单而通用的作法.下面从过顶点和边上任意一点两方面介绍作法:1过任意凸多边形的顶点作面积平分线①任意三角形时,如图1,取BC边中点D,连接AD,显然S△ABD=S△ACD(三角形等积定理),即AD为面积平分线.  相似文献   

12.
有关图形面积的计算或证明是常见的数学问题,通常用“割补法”来解决,但是用“割补法”的计算比较繁琐,因而容易出现差错.学习了“平行线间的距离处处相等”以及“等底等高的三角形面积相等”后,就能运用“等积变换”的方法简捷、巧妙地解决这类问题,下面举例说明.例1如图1,已知,正方形ABCD的边长是a,正方形CEFG的边长为b,且点B、C、E在一条直线上.连结AG、GE、AE,求S△AGE.解方法一:如图2,补△AHG,构成矩形BEFH,得S△AGE=S矩形BEF H-S△ABE-S△EFG-S△AHG=b(a+b)-21a(a+b)-21b2-21a(b-a).=21b2.方法二:如图3,连结DE,…  相似文献   

13.
如上图,连结BE,则三角形BDE与三角形CDE同底等高,所以面积相等,这两个三角形的面积分别减去三角形DOE的面积后,面积仍相等。即S_(△BOE)=S_(△COD)=60平方米。  相似文献   

14.
我们知道三角形面积的计算公式为S=1/2ah,其中a表示底,h表示高,于是很容易推出下面的结论: (1)等底(同底)等高(同高)的两个三角形面积相等: (2)等高的两个三角形面积的比等于其底的比,等底的两个三角形面积的比等于其高的比. 这两个结论在三角形面积的计算中往往非常有用,下面举例说明.  相似文献   

15.
探索:将一个三角形沿着一条中线剪开,得两个面积相等的三角形.如图1,沿中线AD将△ABC剪开,得△ABD和△ACD,有S△ABD=S△ACD.再研究一下这两个三角形的边与角,发现AD=AD,BD=CD,∠ADB+∠ADC=180°.猜想:如果两个三角形的边与角之间满足上述条件,这两个三角形面积相等吗?如图2,在△ABC和△A'B'C中,BC=B'C'=a,AC=A'C'=b,∠ACB+∠A'C'B'=180°.我们试将这两个三角形拼合,使A'C'与AC重合.∵∠ACB+∠A'C'B'=180°,∴B'在BC的延长线上.又∵BC=B'C',∴C是△ABB'的边BB'的中点.∴S△ABC=S△A'B'C'.(等底等高)这说明…  相似文献   

16.
三角形的面积知识:1.三角形的面积S△=1/2×底×高.2.等高(底)的两个三角形面积的比等于它们的底(高)之比.应用三角形的面积知识解决问题的方法称为"面积法",下面举例说明"面积法"在几何解题中的应用.一、求线段  相似文献   

17.
张景中教授在《从数学教育到教育数学》(四川教育出版社,1989年出版)一书中,针对中学数学教育提出了欧氏几何以质量公理体系和以面积理论为核心的解题方法,其中重要的定理是:共边比例定理:若直线PQ和直线AB相交于M点,则S△PAB∶S△QAB=PM∶QM;共角比例题定理:若在△ABC和△A′B′C′中,∠A=∠A′,若∠A ∠A′=180°,则S△ABC∶S△A′B′C′=AB·AC∶A′B′·A′C′,这两个定理在几何证题中是行之有效的.笔者在此基础上提出两个定理:定理1等高不等底的两个三角形面积之比等于对应底边的比.定理2等底不等高的两个三角形面积…  相似文献   

18.
图形的面积     
在小学数学课上,我们已经学过一些简单图形的面积计算,在这里,我们将继续学习图形面积的计算方法.除了要熟记各种几何图形的面积公式外.同学们还应熟练掌握下面几条关于三角形面积的性质:(1)同底等高的两个三角形面积相等;(2)高相等的两个三角形面积之比等于底的比;(3)底相等的两个三角形面积之比等于高的比.运用面积作为工具来解决数学问题的方法叫做面积方法,我们可以运用面积方法来求点到直线的距离,求线段的比以及证明一些几何问  相似文献   

19.
根据三角形的面积公式,可知:等底等高的两个三角形的面积相等.进一步探究还可以发现下面的结论:  相似文献   

20.
面积法证题     
利用图形的面积公式,求解或证明一类几何问题,有它的独到之处.应用这种方法几乎可以解决和证明所有的几何问题,用途十分广泛.可见讨论用面积方法在几何学中的应用是极其意义的.三角形的面积公式是求多边形面积的基础,目前所用到的主要公式并不多,主要有以下几个公式:(1)已知一底及高S_△=(1/2)ah_a=(1/2)ah_b=(1/2)ch_c(2)已知两底及夹角S_△=(1/2)absinC=(1/2)bcsinA=(1/2)casinB(3)已知三边S_△=(p(p-a)(p-b)(p-c))~(1/2) 其中p=(a b c)/2一、面积法证明成比例线段问题应用三角形面积公式,可以得到一系列结论:1.等底三角形面积比,等于对应高的比,当a=a',则S_(△ABC):S_(△A'B'C')=h_a:h_(a')2.等高三角形面积比,等于底的比,当h_a=h_(a'),则S_(△ABC):S_(△A'B'C')=BC:B'C'  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号