首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
定理设二次曲线方程为F(x,y)=Ax~2+2Bxy+Cy~2+2Dx+2Ey +F=0。(1)过平面上任意一定点M(x_0,y_0)(除去曲线的中心)作动直线,与曲线(1)交于P_1、P_2两点,则弦P_1P_2的中点轨迹方程是Φ(x-x_0,y-y_0)÷F_1(x_0,y_0)(x-x_0) ÷F_2(x_0,y_0)(y-y_0)=0(2)并且曲线(1)与曲线(2)同族。其中Φ(x,y)=Ax~2+2Bxy+Cy~2 F_1(x,y)=Ax+By+D F_2(x,y)=Bx+Cy+E 证明:设过定点M(x_0,y_0)的动直线为  相似文献   

2.
众所周知,过二次曲线Ax~2+Cy~2+Dx+Ey+F=0 (g)上一点P_1(x_1,y_1)的切线方程为Ax_1x+Cy_1y+D((x_1+x)/2)+E((y_1+y)/2)+F=0(h)。这是一个将切点(曲线上的点)的坐标x_1、y_1与切线上的点(曲线外的点)的坐标x、y联系起来的公式。当已知切点P_1的坐标P_1(x_1,y_1)时,将x、y看作变量,则(h)为过P_1的切线上点的坐标满足的方程,即过P_1的切线方程。当已知曲线外一点P的坐标P(x,y)时,将x_1、y_1看作变量,则(h)  相似文献   

3.
在平面解析几何中,我们经常遇到过两条曲线交点的曲线方程的问题。它有什么特征呢?现叙证如下: 性质1 若曲线l_1:f_1(x,y)=0与l_2:f_2(x,y)=0有交点为P_0(x_0,y_0),则曲线l_3:f_1(x,y)+λf_2(x,y)=0也经过交点P_0(x_0,y_0)其中λ为一切实数。  相似文献   

4.
[定理1] 设曲线a:F(x,y)=0关于直线l:Ax+By+C=0的对称曲线是a’,则a’的方程为 F(x-(2A(Ax+By+C))/(A~2+B~2),y-(2B(Ax+By+C))/(A~2+B~2))=0 (1) 证:设a上任一点P(x_1,y_1)关于l的对称点是M(x,y).则PM的中点((x+x_1)/2,(y+y_1)/2)∈l,且PM⊥l.当A≠0且B≠0时,  相似文献   

5.
贵刊1983年第5期刊登了《一类直线方程的四种求法》一文,该文介绍了解决如下问题的四种方法:过二次曲线C:F(x,y)=Ax~2+Bxy+Cy~2+Dx+Ey+F=0内部[指包含焦点的平面区域(不包括周界)]已知点M(x_0,y_0)作直线与曲线C相交于两点A(x_1,y_1),B(x_2,y_2),使得点M平分弦AB。对于这类问题,可作如下推广:过M作直线与曲线C相交于两点A(x_1,y_1),B(x_2,y_2),使得M点为弦AB的n等分点。当n≥3时,用《一类直线方程的四种求法》一文介绍的四种方法来求  相似文献   

6.
求已知点P(x_0,Y_0)关于直线y=kx m的对称点P'(x,y),通常是解方程组 {1/2(y y_0)=k·1/2(x x_0) m (y-y_0)/(x-x_0)=-(1/k) 但当k=±1时,可直接用对称轴方程y=±x m即x=±y±m代换以求P'点的位置。定理1 若P'(x,y)是点P(x_0,y_0)关于直线y=x m的对称点,则 {x=y_0-m, y=x_0 m。证明比较简单,兹从略。特别地,当m=0时,点p(x_0,y_0)和点p'(y_0,x_0)关于直线y=x对称。推论1 曲线f(x,y)=0关于直线y=x m对称的曲线方程是f(y-m,x m)  相似文献   

7.
本文介绍利用直线两点式参数方程来证明比例式的一种规范化有效方法,供参考。一、直线两点式参数方程如图, 设P_1(x_1,y_1)、P(x_2,y_2)、P(x,y)都是直线l上的点,且P_1P/PP_2=λ则(x=x_1+λx_2/1+λ)/(y=y_+λy_2/1+λ)(λ为参数,λ≠-1) 即为过P_1、P_2两点的直线的参数方程。∵由(x_1-x_2)/(x-x_2)=1+λ 及  相似文献   

8.
从抛物线y~2=2px外一点p(x_0,y_0)、向抛物线引两条切线,切点为A,B,则线段AB称为p点的切点弦、切点弦AB的方程是yy_0=p(x+x_0),证明如下: 设切点A、B坐标分别为A(x_1,y_1),B(x_2,y_2),则PA、PB方程分别为:  相似文献   

9.
本文介绍抛物线弦所在直线的方程及其应用。设P_1P_2为抛物线y~2=2px的弦,其端点坐标分别为(x_1,y_2),(x_2,y_2),则P_1P_2所在直线方程为 (y-y_1)(y_1+y_2)=2px-y_1~2 (*) 证明:P_1P_2不垂直于y轴时,  相似文献   

10.
对于二次函y_1(x)=a_1x~2+b_1x+c_1与y_2(x)=a_2x~2+b_2x+c_2,(a_1.a_2(/)0),能否找到常数λ,使叠加得到的y_0(x)=y_1(x)+λy_2(x)的函数值不改变符号(定正或定负)? 下面用纯粹初等的方法进行探索: 因y_0(x)=a_1[x~2+b_1/a_1x+c_1/a_1+λa_2/a_1(x~2+b_2/a_2x+c_2/a_2)],若记b_/a_1=b、c_/a_1=c、λa_2/a_1=μ、 b_2/a_2=b_0、c_2/a_2=c_0,即考查y(x)=x~2+bx+c+μ(x~2+b_0x+c_0) 仍记为y(x)=y_1(x)+μy_2(x)〕在哪些情况下可以选取到实数μ使其定号。  相似文献   

11.
解析几何中的中点坐标公式大家是十分熟悉的:由这个公式易看出一个事实,即x_1,x,x_2;y_1,y,y_2两组数都是等差数列,不妨设其公差分别为d_1,d_2。本文的目的在于探讨这两个公差之比的几何意义及其应用。设P_1(x_1,y_1),P_2(x_2,y_2)分别是直线l与二次曲线C的两个交点,P(x,y)为P_1P_2的中点,则d_2/d_1就是弦P_1P_2的斜率k。这一几何意义是不难证明的事实上,d_2/d_1=(y-y_1)/(x-x_1)=k。  相似文献   

12.
设P_1(x_1,y_1),P_2(x_2,y_2)是坐标平面上的两点,直线L的方程为f(x,y) =ax by C=0,二次曲线G的方程为 F(x,y)=Ax~2 Bxy Cy~2 Dx十Ey十F=0.1 若记直线P_1P_2与直线L的交点为P(x,y),并且P点分所成的比为λ(λ≠-1).则 x=(x_1 λx_2)/(1 λ),y=(y_1 λy_2)/(1 λ).代入方 程f(x,y)=0得:a(x_1 λx_2) b(y_1 λy_2) c(1 λ)=0,即ax_1 by_1 c λ(ax_2 by_2 c)=0.  相似文献   

13.
先看一个例题,如图1,⊙O的方程为x~2+y~2=1,A(2,1)为圆外一点,AP,AQ是⊙O的两条切线,P,Q是切点,求切点弦PQ的方程。解:据设,过点P的圆的切线方程为x_1a+y_1y=1(1)∵A(2,1)在切线上,∴2x_1+y_1=1,∴y_1=1-2x_1,同理y_2=1-2x_2。由两点式得切点弦PQ的方程为(x-x_1)/(x_1-x_2)=(y-(1-2x_1))/((1-2x_1)-(1-2x_2))经整理得2x+y=l(2) 方程(2)正好与方程(1)中把P(x_1,y_1)的坐标换成A的坐标。这是巧合吗?不!有如下结论:自圆外一点A(m,n)向圆引两切线,所得切点弦方程与切点为(x_1,y_1)的圆的切线方程中把(x_1,y_1)换成(m,n)的  相似文献   

14.
解析几何里有这样一类问题:过二次曲线 C:F(x,y)≡Ax~2+Bxy+Cy~2+Dx+Ey+F=0内部〔指包含焦点的平面区域(不包括周界)〕已知点 M(x_0,y_0)作直线与曲线C 相交于两点 A(x_1,y_1),B(x_2,y_2),使得 M 点平分弦 AB.例.过二次曲线 C:14x~2+24xy+21y~2-4x+18y-139=0内一点 M(1,-2)作一直线,使截得的弦被 M 点平分。求此直线的方程。  相似文献   

15.
定义1:如果直线L与圆锥曲线C相交于两个重合的点,则称L为圆锥曲线C的切线。 定义2:如果点M与圆锥曲线C的一个焦点F在圆锥曲线的同一部分,则称点M在圆锥 曲线C的内域。如果点M与圆锥曲线 C的焦点 F不在圆锥曲线 C的同一部分则称点 M在圆锥曲线C的外域。 设非退化圆锥曲线C的方程为F(x.y)=a_(11)x~2 2a_(12)xy a_(22)y~2 2a_(13)x 2a_(23)y a_(33)=0(1),为了研究圆锥曲线 C的切线的存在性光给出三个预备定理。本文略去其证明过程。 定理1:点M(X_0,y_0)为曲线c的内点的必要条件是F(x_0,y_0)·I_3>0;点 M(X_0,y_0)为曲线 C的外点的必要条件是 F(X_0,y_0)I_3<0。其中:  相似文献   

16.
椭圆以某定点为中点的弦并非一定存在,那么,中点弦存在的充要条件是什么?有何应用,本文作下列探讨: 一中点弦方程的一种求法。设椭圆b~2x~2 a~2y~2-a~2b~2=0,(a>0,b>0)…(1) 及定点P_0(x_0,y_0),若以P_0为中点的弦存在,且两端点分别为A(x_1,y_1),B(x_2,y_2) 则:b~2x_1~2 a~2y_1~2-a~2b~2=0 b~2x_2~2 a~2y_2~2-a~2b~2=0 两式相减整理得: (y_1-y_2)/(x_1-x_2)=(x_1 x_2)/(y_1 y_2)·b~2/a~2 =-b~2/a~2·x_0/y_0 (x_1≠x_2) 即k=-(b~2x_0)/(a~2y_0),代入点斜式得中点弦方程:a~2y_0y b~2x_0x=a~2y_0~2 b~2x_0~2……(2) 如果x_1=x_2,那么y_0=0,中点弦方程为x=x_0仍包含在(2)中。  相似文献   

17.
每期一题     
题:若抛物线y=ax~2- 1(a≠0)上存在关于直线l:x y=0对称的两点,试求a的范围。解法1(判别式法)设抛物线上关于直线l对称的相异两点分别为P、Q,则PQ方程可设为y=x b。由于P、Q两点的存在,所以方程组 y=x b 有两组不相同的实数 y=ax~2-1 解,即可得方程: ax~2-x-(1 b)=0 ①判别式△=1 4a(1 b)>0 ②又设P(x_1,y_1),Q(x_2,y_2),PQ中点M(x_0,y_0)。由①得x_0=x_1 x_2/2=1/2a,y_0=  相似文献   

18.
在平面上,一点(x_0,y_0)对于常态二次曲线的切点弦方程,在形式上是和切点为(x_0,y_0)的关于二次曲线的切线方程是一样的。当然,这时必须存在过点(x_0,y_0)的关于二次曲线的实切线。因而对于不在曲线上的点(x_0,y_0)是受到位置上的限制的。例如,对于椭圆,点(x_0,y_0)必须在椭圆外部。 对于切点弦方程,笔者作如下猜想,即当自点(x_0,y_0)不能引常态二次曲线的实切线时,虚切点弦方程依然取实切点弦方程的相同形式。为此,平面上嵌入复点。下面对猜想进行检验。  相似文献   

19.
定理设P(x_0,y_0)为非退化曲线f(x,y)=ax~2 2bxy cy~2 2dx 2ey f=0所在平面上一点.若过P向曲线f(x,y)=0所引切线存在,则切线方程为: [(ax_0 by_0 c)(x-x_0) (bx_0, cy_0 e)(y-y_0)]~2 =[a(x-x_0)~2 2b(x-x_0) c(y-y_0)~2] ·f(x_0,y_0)。 (1) 证设由P引f(x,y)=0的切线,切点为  相似文献   

20.
本文提供一种有关二次曲线弦中点的题目的解法,此法应用面较宽,且思路清楚,规律性强,计算简单,便于掌握。此法是以下面定理为基础的。定理若直线l与二次曲线C:f(x,y)=0交于P_1、P_2两点,P(x_0,y_0)是线段P_1P_2的中点,那么直线l的方程是  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号