首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper deals with the input–output finite-time stabilization problem for Markovian jump systems (MJSs) with incompletely known transition rates. An observer-based output feedback controller is constructed to study the input–output finite-time stability (IO-FTS) problem. By using the mode-dependent Lyapunov–krasovskii functional method, a sufficient criterion checking the IO-FTS problem is provided. Then, an observer and a corresponding state feedback controller for the individual subsystem are respectively designed to solve the input–output finite-time stabilization problem for the systems. Finally, a numerical example on the mass-spring system model is investigated to bring out the advantages of the control scheme proposed in this paper.  相似文献   

2.
The problem of decentralized adaptive control is investigated for a class of large-scale nonstrict-feedback nonlinear systems subject to dynamic interaction and unmeasurable states, where the dynamic interaction is related to both input and output items. First, the fuzzy logic system is utilized to tackle unknown nonlinear function with nonstrict-feedback structure. Then, by combining adaptive and backstepping technology, the proper output feedback controller is designed. Meanwhile, a fuzzy state observer is proposed to estimate the unmeasurable states. The proposed controller could guarantee that all the signals of the resulting closed-loop systems are bounded. Finally, the applicability of the proposed controller is well carried out by a simulation example.  相似文献   

3.
The robust control problem of a class of uncertain systems subject to intermittent measurement as well as external disturbances is considered. The disturbances are supposed to be generated by an exogenous system, while the state information is assumed to be available only on some nonoverlapping time intervals. A composite design consisting of an intermittent state feedback controller augmented by a disturbance compensation term derived from a disturbance observer is formulated. Unlike the conventional disturbance observers, the proposed disturbance observer is modelled by a switched impulsive system, which makes use of the intermittent state data to estimate the disturbances. Stability analysis of the resulting closed-loop system is performed by applying a piecewise time-dependent Lyapunov function. Then a sufficient condition for the existence of the proposed composite controllers is derived in terms of linear matrix inequalities (LMIs). The controller and observer gains can be achieved by solving a set of LMIs. Further, a procedure to limit the norms of the controller and observer gains is given. Finally, an illustrative example is presented to demonstrate the validity of the results.  相似文献   

4.
In this paper, we investigate the consensus tracking problem of nonlinear MASs with nonuniform time-varying input delays and external disturbances. For each follower, the composited disturbance observer and the state observer are employed to estimate bounded composited disturbances and unmeasured states, and a distributed observer based on output-feedback is proposed to approximate the leader’s states approachably. Sequentially, the consensus tracking control is converted into a stability control problem for the nonlinear MASs with nonuniform time-varying input delays. Subsequently, a distributed controller based on the truncated prediction approach is presented, which only depends on the boundary value of time-varying input delays. The distributed controller can render each follower synchronically stable via the Lyapunov stability theory. Finally, a group of single-link manipulators is used as an example to verify the effectiveness of the theoretical results.  相似文献   

5.
This paper studies the robust stochastic stabilization problem for a class of fuzzy Markovian jump systems with time-varying delay and external disturbances via sliding mode control scheme. Based on the equivalent-input-disturbance (EID) approach, an online disturbance estimator is implemented to reject the unknown disturbance effect on the considered system. Specifically, to obtain exact EID estimation Luenberger fuzzy state observer and a low-pass filter incorporated to the closed-loop system. Moreover, novel fuzzy EID-based sliding mode control law is constructed to ensure the stability of the closed-loop system with satisfactory disturbance rejection performance. By employing Lyapunov stability theory and some integral inequalities, a new set of delay-dependent robust stability conditions is derived in terms of linear matrix inequalities (LMIs). The resulting LMI is used to find the gains of the state-feedback controller and the state observer a for the resulting closed-loop system. At last, numerical simulations based on the single-link arm robot model are provided to illustrate the proposed design technique.  相似文献   

6.
In this paper, we study the consensus tracking control problem of a class of strict-feedback multi-agent systems (MASs) with uncertain nonlinear dynamics, input saturation, output and partial state constraints (PSCs) which are assumed to be time-varying. An adaptive distributed control scheme is proposed for consensus achievement via output feedback and event-triggered strategy in directed networks containing a spanning tree. To handle saturated control inputs, a linear form of the control input is adopted by transforming the saturation function. The radial basis function neural network (RBFNN) is applied to approximate the uncertain nonlinear dynamics. Since the system outputs are the only available data, a high-gain adaptive observer based on RBFNN is constructed to estimate the unmeasurable states. To ensure that the constraints of system outputs and partial states are never violated, a barrier Lyapunov function (BLF) with time-varying boundary function is constructed. Event-triggered control (ETC) strategy is applied to save communication resources. By using backstepping design method, the proposed distributed controller can guarantee the boundedness of all system signals, consensus tracking with a bounded error and avoidance of Zeno behavior. Finally, the correctness of the theoretical results is verified by computer simulation.  相似文献   

7.
In this paper, we study the cooperative consensus control problem of mixed-order (also called hybrid-order) multi-agent mechanical systems (MMSs) under the condition of unmeasurable state, unknown disturbance and constrained control input. Here, the controlled mixed-order MMSs are consisted of the mechanical agents having heterogeneous nonlinear dynamics and even non-identical orders, which means that the agents can be of different types and their states to be synchronized can be not exactly the same. In order to achieve the ultimate synchronization of all mixed-order followers, we present a novel distributed adaptive tracking control protocol based on the state and disturbance observations. Wherein, a distributed state observer is used to estimate the followers’ and their neighbors’ unmeasurable states. And, a novel estimated-state-based disturbance observer (DOB) is proposed to reduce the effect of unknown lumped disturbance for the mixed-order MMSs. The proposed control protocol and observers are fully distributed and can be calculated for each follower locally. Lyapunov theory is used for proving the stability of the proposed control algorithm and the convergence of the cooperative tracking errors. A practical cooperative longitudinal landing control example of unmanned aerial vehicles (UAVs) is given to illustrate the effectiveness of the presented control protocol.  相似文献   

8.
This paper proposes a probabilistic fuzzy proportional - integral (PFPI) controller for controlling uncertain nonlinear systems. Firstly, the probabilistic fuzzy logic system (PFLS) improves the capability of the ordinary fuzzy logic system (FLS) to overcome various uncertainties in the controlled dynamical systems by integrating the probability method into the fuzzy logic system. Moreover, the input/output relationship for the proposed PFPI controller is derived. The resulting structure is equivalent to nonlinear PI controller and the equivalent gains for the proposed PFPI controller are a nonlinear function of input variables. These gains are changed as the input variables changed. The sufficient conditions for the proposed PFPI controller, which achieve the bounded-input bounded-output (BIBO) stability are obtained based on the small gain theorem. Finally, the obtained results indicate that the PFPI controller is able to reduce the effect of the system uncertainties compared with the fuzzy PI (FPI) controller.  相似文献   

9.
This paper addresses the cooperative output feedback control of a mobile dual flexible manipulator, which is mounted at a moving platform to grasp and move a rigid object. We derive the distributed parameter model with geometric constraints for the dual flexible manipulator system by utilizing the Lagrange multiplier method and the Hamilton’s principle, which avoids the problem of control spillover. This paper considers a case where the states of system are difficult to measure directly and exploits the high gain observer theory to design the state observers for estimating the unavailable states. Then the cooperative output feedback control scheme is developed by the Lyapunov’s method, which enables the cooperative control of the flexible manipulator system. Furthermore, under the cooperative output feedback control scheme, we prove that the states of the system are uniformly bounded. Finally, the feasibility of the designed cooperative output feedback controllers is verified by numerical simulation.  相似文献   

10.
A robust model matching control scheme for input/output asynchronous sequential machines (ASMs) with intermittent actuator faults is presented in the framework of corrective control. In our problem setting, certain actuator outputs are not transmitted to the machine temporarily owing to random faults. We first present a state observer that predicts the current stable state of the machine based on the output burst and control input, as well as diagnoses actuator faults. We then address the existence condition and design procedure for an output-feedback corrective controller that matches the input/output behavior of the closed-loop system to that of a reference model against intermittent loss of actuator outputs. To demonstrate the applicability of the proposed control method, we implement a practical asynchronous digital system with the developed corrective controller on the field-programmable gate array (FPGA) circuit. Experimental verifications using the FPGA circuit are also provided.  相似文献   

11.
In this paper, a novel robust control strategy based on disturbance-compensation-gain (DCG) construction approach is proposed for small-scale unmanned helicopters in the presence of high-order mismatched disturbances. The overall control structure consists of two hierarchical layers. The inner-loop controller is to guarantee the stability of the unmanned helicopters subject to high-order mismatched disturbances. With the estimation of the disturbances and their successive derivatives via finite-time disturbance observer (FTDO), by properly designing some disturbance compensation gains, a novel robust controller is developed to remove the high-order mismatched disturbances from the output channels. The outer-loop controller is to produce flight commands for inner-loop system, as well as to track the reference trajectory, which is carried out with the dynamic inversion technique. The simulation results demonstrate that the unmanned helicopters are capable to perform flight missions autonomously with the proposed control strategy.  相似文献   

12.
In this paper, we investigate the problem of output feedback tracking for a class of Euler–Lagrange multi-agent systems with unmeasurable velocity and input disturbances. By proposing a novel dynamic velocity observer, an adaptive output feedback consensus algorithm is proposed such that the tracking errors of all agents can converge to an arbitrarily small neighborhood of zero by tuning the design parameters. A numerical example is presented to illustrate the effectiveness of the controller.  相似文献   

13.
This paper is concerned with the problem of exponentially extended dissipative criteria for a class of delayed discrete-time neural networks (DNNs) subject to resilient observer-based controller design. For this objective, a memoryless full-order Luenberger state observer is designed, and further, its observer error system is calculated with resilient control. Initially, some new improved weighted summation inequalities are proposed by combining weighted summation inequality and an extended reciprocal convex matrix inequality. By constructing the suitable Lyapunov-Krasovskii functional (LKF) and utilizing the developed summation inequalities, the exponentially extended dissipative criterion is obtained for the considered delayed DNNs. The designed observer and resilient control gain matrices can be determined by solving a set of linear matrix inequalities (LMIs) subject to the prescribed exponential decay rate. Finally, two numerical examples are carried out to illustrate the feasibility and effectiveness of the established theoretical results obtained through the newly developed summation inequalities.  相似文献   

14.
15.
This paper focuses on the fixed-time leader-following consensus problem for multiple Euler–Lagrange (EL) systems via non-singular terminal sliding mode control under a directed graph. Firstly, for each EL system, a local fixed-time disturbance observer is introduced to estimate the compound disturbance (including uncertain parameters and external disturbances) within a fixed time under the assumption that the disturbance is bounded. Next, a distributed fixed-time observer is designed to estimate the leader’s position and velocity, and the consensus problem is transformed into a local tracking problem by introducing such an observer. On the basis of the two types of observers designed, a novel non-singular terminal sliding surface is proposed to guarantee that the tracking errors on the sliding surface converge to zero within a fixed time. Furthermore, the presented control algorithm also ensures the fixed-time reachability of the sliding surface, while avoiding the singularity problem. Finally, the effectiveness of the proposed observers and control protocol is further verified by a numerical simulation.  相似文献   

16.
《Journal of The Franklin Institute》2021,358(18):10004-10028
In this paper, the consensus problem is considered for multi-agent systems with input constraint under directed graphs, including leaderless and leader-following cases. Different from existing related works, the distinct feature of this paper is that both the amplitude and rate of the agents’ input are ensured in the given ranges. For the leaderless case, the saturation control strategy is designed and employed for multi-agent systems consensus with the aid of a novel saturation function. For the leader-following case, the saturation-function-based distributed observer as well as the observer-based saturation controller are proposed to achieve consensus. Finally, simulation results show the effectiveness of the designed methods.  相似文献   

17.
This paper investigates a composite controller for load frequency control (LFC) in multi-region interconnected power systems via sliding mode observer design. State observers (SOs) and disturbance observers (DOs) are implied for the LFC based on the load variations with communication delays and quantization output measurements. A nonlinear integral sliding surface combined with a composite controller is developed to optimize control performance. Moreover, a three-area power system model is used to demonstrate the effectiveness of the proposed scheme in the illustrative example, confirming that frequency deviations can be rejected despite delays, uncertainties, and quantization during transmission.  相似文献   

18.
This paper focuses on the problem of adaptive output feedback control for a class of uncertain nonlinear systems with input delay and disturbances. Radial basis function neural networks (NNs) are employed to approximate the unknown functions and an NN observer is constructed to estimate the unmeasurable system states. Moreover, an auxiliary system is introduced to compensate for the effect of input delay. With the aid of the backstepping technique and Lyapunov stability theorem, an adaptive NN output feedback controller is designed which can guarantee the boundedness of all the signals in the closed-loop systems. Finally, a simulation example is given to illustrate the effectiveness of the proposed method.  相似文献   

19.
The problem of a grouped multiple missiles cooperative attack on multiple high maneuvering targets with a limited driving force is achieved by an anti-saturation fixed-time grouped cooperative guidance (FxTCG) law based on a sliding mode fixed-time disturbance observer (SM-FxTDO) in this study. First, the state estimation of each high maneuvering target within a fixed time is achieved by designing a sliding mode fixed-time disturbance observer. Second, the group cooperative guidance law is designed by using fixed-time theory, which can ensure the group consensus of multiple missiles strike times within a fixed time under the condition of input saturation. Then, the fixed time stability of the multi-missiles system is proven by using the bi-limit homogeneous theory and the Lyapunov function. Finally, the simulation results show the superiority of the designed observer and cooperative guidance law. The proposed observer can more effectively and accurately estimate the state of the high maneuvering target than the ESO. The proposed cooperative guidance law expands the number of attack targets and makes each group of multiple missiles attack the corresponding high maneuvering target under the conditions of an input saturation within a fixed time compared to the single-target cooperative law.  相似文献   

20.
This paper proposes a framework for the design of sparsely distributed output feedback discrete-time sliding mode control (ODSMC) for interconnected systems. The major target here is to develop an observer based discrete-time sliding mode controller employing a sparsely distributed control network structure in which local controllers exploit some other sub-systems’ information as well as its own local information. As the local controllers/observers have access to some other sub-systems’ states, the control performance will be improved and the applicability region will be widened compared to the decentralised structure. As the first step, a stability condition is derived for the overall closed-loop system obtained from applying ODSMC to the underlying interconnected system, by assuming a priori known structure for the control/observer network. The developed LMI based controller design scheme provides the possibility to employ different information patterns such as fully distributed, sparsely distributed and decentralised patterns. In the second step, we propose a methodology to identify a sparse control/observer network structure with the least possible number of communication links that satisfies the stability condition given in the first step. The boundedness of the obtained overall closed-loop system is analysed and a bound is derived for the augmented system state which includes the closed-loop system state and the switching function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号