首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Robust maximum likelihood (ML) and categorical diagonally weighted least squares (cat-DWLS) estimation have both been proposed for use with categorized and nonnormally distributed data. This study compares results from the 2 methods in terms of parameter estimate and standard error bias, power, and Type I error control, with unadjusted ML and WLS estimation methods included for purposes of comparison. Conditions manipulated include model misspecification, level of asymmetry, level and categorization, sample size, and type and size of the model. Results indicate that cat-DWLS estimation method results in the least parameter estimate and standard error bias under the majority of conditions studied. Cat-DWLS parameter estimates and standard errors were generally the least affected by model misspecification of the estimation methods studied. Robust ML also performed well, yielding relatively unbiased parameter estimates and standard errors. However, both cat-DWLS and robust ML resulted in low power under conditions of high data asymmetry, small sample sizes, and mild model misspecification. For more optimal conditions, power for these estimators was adequate.  相似文献   

2.
Ill conditioning of covariance and weight matrices used in structural equation modeling (SEM) is a possible source of inadequate performance of SEM statistics in nonasymptotic samples. A maximum a posteriori (MAP) covariance matrix is proposed for weight matrix regularization in normal theory generalized least squares (GLS) estimation. Maximum likelihood (ML), GLS, and regularized GLS test statistics (RGLS and rGLS) are studied by simulation in a 15-variable, 3-factor model with 15 levels of sample size varying from 60 to 100,000. A key result showed that in terms of nominal rejection rates, RGLS outperformed ML at all sample sizes below 500, and GLS at most sample sizes below 500. In larger samples, their performance was equivalent. The second regularization methodology (rGLS) performed well asymptotically, but poorly in small samples. Regularization in SEM deserves further study.  相似文献   

3.
Research in covariance structure analysis suggests that nonnormal data will invalidate chi‐square tests and produce erroneous standard errors. However, much remains unknown about the extent to and the conditions under which highly skewed and kurtotic data can affect the parameter estimates, standard errors, and fit indices. Using actual kurtotic and skewed data and varying sample sizes and estimation methods, we found that (a) normal theory maximum likelihood (ML) and generalized least squares estimators were fairly consistent and almost identical, (b) standard errors tended to underestimate the true variation of the estimators, but the problem was not very serious for large samples (n = 1,000) and conservative (99%) confidence intervals, and (c) the adjusted chi‐square tests seemed to yield acceptable results with appropriate sample sizes.  相似文献   

4.
This study compared diagonal weighted least squares robust estimation techniques available in 2 popular statistical programs: diagonal weighted least squares (DWLS; LISREL version 8.80) and weighted least squares–mean (WLSM) and weighted least squares—mean and variance adjusted (WLSMV; Mplus version 6.11). A 20-item confirmatory factor analysis was estimated using item-level ordered categorical data. Three different nonnormality conditions were applied to 2- to 7-category data with sample sizes of 200, 400, and 800. Convergence problems were seen with nonnormal data when DWLS was used with few categories. Both DWLS and WLSMV produced accurate parameter estimates; however, bias in standard errors of parameter estimates was extreme for select conditions when nonnormal data were present. The robust estimators generally reported acceptable model–data fit, unless few categories were used with nonnormal data at smaller sample sizes; WLSMV yielded better fit than WLSM for most indices.  相似文献   

5.
A Monte Carlo simulation study was conducted to investigate the effects on structural equation modeling (SEM) fit indexes of sample size, estimation method, and model specification. Based on a balanced experimental design, samples were generated from a prespecified population covariance matrix and fitted to structural equation models with different degrees of model misspecification. Ten SEM fit indexes were studied. Two primary conclusions were suggested: (a) some fit indexes appear to be noncomparable in terms of the information they provide about model fit for misspecified models and (b) estimation method strongly influenced almost all the fit indexes examined, especially for misspecified models. These 2 issues do not seem to have drawn enough attention from SEM practitioners. Future research should study not only different models vis‐à‐vis model complexity, but a wider range of model specification conditions, including correctly specified models and models specified incorrectly to varying degrees.  相似文献   

6.
Previous research indicates that relative fit indices in structural equation modeling may vary across estimation methods. Sugawara and MacCallum (1993) explained that the discrepancy arises from difference in the function values for the null model with no further derivation given. In this study, we derive explicit solutions for parameters of the null model. The null model specifies the variances of the observed variables as model parameters and fixes all the covariances to be zero. Three methods of estimation are considered: the maximum likelihood (ML) method, the ordinary least squares (OLS) method, and the generalized least squares (GLS) method. Results indicate that ML and LS yield an identical estimator, which is different from GLS. Function values and associated chi‐square statistics of the null model vary across estimation methods. Consequently, relative fit indices using the null model as the reference point in computation may yield different results depending on the estimation method chosen. An illustration example is given and implications of this study are discussed.  相似文献   

7.
Ordinal variables are common in many empirical investigations in the social and behavioral sciences. Researchers often apply the maximum likelihood method to fit structural equation models to ordinal data. This assumes that the observed measures have normal distributions, which is not the case when the variables are ordinal. A better approach is to use polychoric correlations and fit the models using methods such as unweighted least squares (ULS), maximum likelihood (ML), weighted least squares (WLS), or diagonally weighted least squares (DWLS). In this simulation evaluation we study the behavior of these methods in combination with polychoric correlations when the models are misspecified. We also study the effect of model size and number of categories on the parameter estimates, their standard errors, and the common chi-square measures of fit when the models are both correct and misspecified. When used routinely, these methods give consistent parameter estimates but ULS, ML, and DWLS give incorrect standard errors. Correct standard errors can be obtained for these methods by robustification using an estimate of the asymptotic covariance matrix W of the polychoric correlations. When used in this way the methods are here called RULS, RML, and RDWLS.  相似文献   

8.
Data collected from questionnaires are often in ordinal scale. Unweighted least squares (ULS), diagonally weighted least squares (DWLS) and normal-theory maximum likelihood (ML) are commonly used methods to fit structural equation models. Consistency of these estimators demands no structural misspecification. In this article, we conduct a simulation study to compare the equation-by-equation polychoric instrumental variable (PIV) estimation with ULS, DWLS, and ML. Accuracy of PIV for the correctly specified model and robustness of PIV for misspecified models are investigated through a confirmatory factor analysis (CFA) model and a structural equation model with ordinal indicators. The effects of sample size and nonnormality of the underlying continuous variables are also examined. The simulation results show that PIV produces robust factor loading estimates in the CFA model and in structural equation models. PIV also produces robust path coefficient estimates in the model where valid instruments are used. However, robustness highly depends on the validity of instruments.  相似文献   

9.
A paucity of research has compared estimation methods within a measurement invariance (MI) framework and determined if research conclusions using normal-theory maximum likelihood (ML) generalizes to the robust ML (MLR) and weighted least squares means and variance adjusted (WLSMV) estimators. Using ordered categorical data, this simulation study aimed to address these queries by investigating 342 conditions. When testing for metric and scalar invariance, Δχ2 results revealed that Type I error rates varied across estimators (ML, MLR, and WLSMV) with symmetric and asymmetric data. The Δχ2 power varied substantially based on the estimator selected, type of noninvariant indicator, number of noninvariant indicators, and sample size. Although some the changes in approximate fit indexes (ΔAFI) are relatively sample size independent, researchers who use the ΔAFI with WLSMV should use caution, as these statistics do not perform well with misspecified models. As a supplemental analysis, our results evaluate and suggest cutoff values based on previous research.  相似文献   

10.
This study examined the performance of the weighted root mean square residual (WRMR) through a simulation study using confirmatory factor analysis with ordinal data. Values and cut scores for the WRMR were examined, along with a comparison of its performance relative to commonly cited fit indexes. The findings showed that WRMR illustrated worse fit when sample size increased or model misspecification increased. Lower (i.e., better) values of WRMR were observed when nonnormal data were present, there were lower loadings, and when few categories were analyzed. WRMR generally illustrated expected patterns of relations to other well-known fit indexes. In general, a cutoff value of 1.0 appeared to work adequately under the tested conditions and the WRMR values of “good fit” were generally in agreement with other indexes. Users are cautioned that when the fitted model is misspeficifed, the index might provide misleading results under situations where extremely large sample sizes are used.  相似文献   

11.
The purpose of this study is to investigate the effects of missing data techniques in longitudinal studies under diverse conditions. A Monte Carlo simulation examined the performance of 3 missing data methods in latent growth modeling: listwise deletion (LD), maximum likelihood estimation using the expectation and maximization algorithm with a nonnormality correction (robust ML), and the pairwise asymptotically distribution-free method (pairwise ADF). The effects of 3 independent variables (sample size, missing data mechanism, and distribution shape) were investigated on convergence rate, parameter and standard error estimation, and model fit. The results favored robust ML over LD and pairwise ADF in almost all respects. The exceptions included convergence rates under the most severe nonnormality in the missing not at random (MNAR) condition and recovery of standard error estimates across sample sizes. The results also indicate that nonnormality, small sample size, MNAR, and multicollinearity might adversely affect convergence rate and the validity of statistical inferences concerning parameter estimates and model fit statistics.  相似文献   

12.
Local‐influence diagnostics based on maximum likelihood (ML), generalized least squares (GLS), and unweighted least squares (ULS) fit functions are developed for structural equation models (SEMs). The influence of observations, components of observations, and variables is considered. The diagnostics are illustrated with an example data set, and comparisons are made with equivalent global measures of influence. The local influence of the data set on ML and GLS estimates is very similar, but it is much different from that of ULS. The local and global influence of observations is also very different. Although it is not possible to define a uniformly best measure of influence, the local‐influence diagnostics developed here are more versatile than global‐influence diagnostics in assessing an analysis with SEMs.  相似文献   

13.
A problem central to structural equation modeling is measurement model specification error and its propagation into the structural part of nonrecursive latent variable models. Full-information estimation techniques such as maximum likelihood are consistent when the model is correctly specified and the sample size large enough; however, any misspecification within the model can affect parameter estimates in other parts of the model. The goals of this study included comparing the bias, efficiency, and accuracy of hypothesis tests in nonrecursive latent variable models with indirect and direct feedback loops. We compare the performance of maximum likelihood, two-stage least-squares and Bayesian estimators in nonrecursive latent variable models with indirect and direct feedback loops under various degrees of misspecification in small to moderate sample size conditions.  相似文献   

14.
The effects of misspecifying intercept-covariate interactions in a 4 time-point latent growth model were the focus of this investigation. The investigation was motivated by school growth studies in which students' entry-level skills may affect their rate of growth. We studied the latent interaction of intercept and a covariate in predicting growth with respect to 3 factors: sample size (100, 200, and 500), 4 levels of magnitude of interaction effect, and 3 correlation values between intercept and covariate (.3, .5, and .7). Correctly specified models were examined to determine power and Type I error rates, and misspecified models were examined to evaluate the effects on power, parameter estimation, bias, and fit indexes. Results showed that, under correctly specified models, power increased as expected with increasing sample size, larger magnitude of interaction, and larger intercept-covariate correlation. Under misspecification, omitting a non-null interaction results in significant change in the estimation of the direct effects of both covariate and intercept in both magnitude and direction, with results dependent on sign of parameter values for main effects and interaction. Including a spurious interaction does not affect estimation of direct effects of intercept and covariate but does increase standard errors. The primary problem in ignoring a non-null interaction lies in misinterpretation of the model, as interactions yield important insights into the nature of the processes being studied.  相似文献   

15.
The relation among fit indexes, power, and sample size in structural equation modeling is examined. The noncentrality parameter is required to compute power. The 2 existing methods of computing power have estimated the noncentrality parameter by specifying an alternative hypothesis or alternative fit. These methods cannot be implemented easily and reliably. In this study, 4 fit indexes (RMSEA, CFI, McDonald's Fit Index, and Steiger's gamma) were used to compute the noncentrality parameter and sample size to achieve certain level of power. The resulting power and sample size varied as a function of (a) choice of fit index, (b) number of variables/degrees of freedom, (c) relation among the variables, and (d) value of the fit index. However, if the level of misspecification were held constant, then the resulting power and sample size would be identical.  相似文献   

16.
In the logistic regression (LR) procedure for differential item functioning (DIF), the parameters of LR have often been estimated using maximum likelihood (ML) estimation. However, ML estimation suffers from the finite-sample bias. Furthermore, ML estimation for LR can be substantially biased in the presence of rare event data. The bias of ML estimation due to small samples and rare event data can degrade the performance of the LR procedure, especially when testing the DIF of difficult items in small samples. Penalized ML (PML) estimation was originally developed to reduce the finite-sample bias of conventional ML estimation and also was known to reduce the bias in the estimation of LR for the rare events data. The goal of this study is to compare the performances of the LR procedures based on the ML and PML estimation in terms of the statistical power and Type I error. In a simulation study, Swaminathan and Rogers's Wald test based on PML estimation (PSR) showed the highest statistical power in most of the simulation conditions, and LRT based on conventional PML estimation (PLRT) showed the most robust and stable Type I error. The discussion about the trade-off between bias and variance is presented in the discussion section.  相似文献   

17.
Proper model specification is an issue for researchers, regardless of the estimation framework being utilized. Typically, indexes are used to compare the fit of one model to the fit of an alternate model. These indexes only provide an indication of relative fit and do not necessarily point toward proper model specification. There is a procedure in the Bayesian framework called posterior predictive checking that is designed theoretically to detect model misspecification for observed data. However, the performance of the posterior predictive check procedure has thus far not been directly examined under different conditions of mixture model misspecification. This article addresses this task and aims to provide additional insight into whether or not posterior predictive checks can detect model misspecification within the context of Bayesian growth mixture modeling. Results indicate that this procedure can only identify mixture model misspecification under very extreme cases of misspecification.  相似文献   

18.
This simulation study compared maximum likelihood (ML) estimation with weighted least squares means and variance adjusted (WLSMV) estimation. The study was based on confirmatory factor analyses with 1, 2, 4, and 8 factors, based on 250, 500, 750, and 1,000 cases, and on 5, 10, 20, and 40 variables with 2, 3, 4, 5, and 6 categories. There was no model misspecification. The most important results were that with 2 and 3 categories the rejection rates of the WLSMV chi-square test corresponded much more to the expected rejection rates according to an alpha level of. 05 than the rejection rates of the ML chi-square test. The magnitude of the loadings was more precisely estimated by means of WLSMV when the variables had only 2 or 3 categories. The sample size for WLSMV estimation needed not to be larger than the sample size for ML estimation.  相似文献   

19.
Assessing the correctness of a structural equation model is essential to avoid drawing incorrect conclusions from empirical research. In the past, the chi-square test was recommended for assessing the correctness of the model but this test has been criticized because of its sensitivity to sample size. As a reaction, an abundance of fit indexes have been developed. The result of these developments is that structural equation modeling packages are now producing a large list of fit measures. One would think that this progression has led to a clear understanding of evaluating models with respect to model misspecifications. In this article we question the validity of approaches for model evaluation based on overall goodness-of-fit indexes. The argument against such usage is that they do not provide an adequate indication of the “size” of the model's misspecification. That is, they vary dramatically with the values of incidental parameters that are unrelated with the misspecification in the model. This is illustrated using simple but fundamental models. As an alternative method of model evaluation, we suggest using the expected parameter change in combination with the modification index (MI) and the power of the MI test.  相似文献   

20.
This study examined the performance of 4 correlation-based fit indexes (marginal and conditional pseudo R 2s; average and conditional concordance correlations) in detecting misspecification in mean structures in growth curve models. Their performance was also compared to that of 4 traditional SEM fit indexes. We found that the marginal pseudo R 2 and average concordance correlation were able to detect misspecification in the marginal mean structure (average change trajectory). The conditional pseudo R 2 and concordance correlation could detect misspecification when it occurred in the conditional mean structure (individual change trajectory) or in both mean structures. Compared to the SEM fit indexes, the correlation-based fit indexes were more robust to sample size but were less robust to data properties such as magnitude of population mean and measurement error. Theoretical and practical implications of the results and directions for future research are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号