首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

This paper offers pedagogical content knowledge (PCK) rubrics, that is, guides providing criteria for grading that are potentially applicable to a range of science topics and levels of teacher experience. Grading criteria applied in the rubrics are based on qualitative analyses of planned topic-specific professional knowledge (TSPK) and content knowledge (CK). Data were collected via three topic-specific vignettes from 239 pre-service science teachers (PSTs) starting a university-based, full-time, one year teacher education programme in England. The statements were analysed for TSPK and CK. PSTs’ statements proposed instructional strategies comprising demonstrations, explanations, illustrations and analogies, classified as Relevant to the science topics, others Irrelevant. Some Relevant strategies missed an aspect that may, if enacted, help students’ learning, so were judged Incomplete. Statements were also analysed for evidence of relevant and correct CK. CK and TSPK statements are aligned into grids, creating PCK rubrics. These demonstrate the precise nature of knowledge likely to lead to instruction that impacts positively on student learning. The rubrics present the possibility of PCK repertoires that contribute clarity and precision to teaching instruction. Although findings cannot be generalised, the methodology offers a strategy for supporting out-of-field teachers, and those seeking instructional strategies to add to existing repertoires.  相似文献   

2.
In order to understand how prospective teachers develop knowledge for teaching, researchers must identify the types of knowledge that are integral to effective science teaching. This case study investigated how 4 prospective secondary biology teachers’ science teaching orientations, knowledge of science learners, and knowledge of instructional sequence, developed during a post-baccalaureate teacher education program. Data sources included a lesson planning task and two interview-observation cycles during the participants’ year-long internship. Over the course of a year, the participants’ science teaching orientations were based primarily on their K-16 learning experiences, and were robust and highly resistant to change. The prospective teachers became more aware of student learning difficulties, and therefore, developed more elaborated knowledge of the requirements of learning. They consistently sequenced instruction in ways that gave priority to transmitting information to students. Prospective teachers’ development of knowledge of student understanding of science and instructional sequence were congruent with their science teaching orientations. Implications are given for teacher education and future research.  相似文献   

3.
ABSTRACT

While the literature is replete with studies examining teacher knowledge and pedagogical content knowledge (PCK), few studies have investigated how science teacher orientations (STOs) shape classroom instruction. Therefore, this research explores the interplay between a STOs and the topic specificity of PCK across two science topics within a grade 9 earth science course. Through interviews and observations of one teacher’s classroom across two sequentially taught, this research contests the notion that teachers hold a single way of conceptualising science teaching and learning. In this, we consider if multiple ontologies can provide potential explanatory power for characterising instructional enactments. In earlier work with the teacher in this study, using generic interview prompts and general discussions about science teaching and learning, we accepted the existence of a unitary STO and its promise of consistent reformed instruction in the classroom. However, upon close examination of instruction focused on different science topics, evidence was found to demonstrate the explanatory power of multiple ontologies for shaping characteristically different epistemological constructions across science topics. This research points to the need for care in generalising about teacher practice, as it reveals that a teacher’s practice, and orientation, can vary, dependent on the context and science topics taught.  相似文献   

4.
Although the concept of “rural” is difficult to define, rural science education provides the possibility for learning centered upon a strong connection to the local community. Rural American adolescents tend to be more religious than their urban counterparts and less accepting of evolution than their non-rural peers. Because the status and perception of evolutionary theory may be very different within the students’ lifeworlds and the subcultures of the science classroom and science itself, a cultural border crossing metaphor can be applied to evolution teaching and learning. This study examines how a teacher may serve as a cultural border crossing tour guide for students at a rural high school as they explore the concept of biological evolution in their high school biology class. Data collection entailed two formal teacher interviews, field note observations of two biology class periods each day for 16 days during the Evolution unit, individual interviews with 14 students, student evolution acceptance surveys, student evolution content tests, and classroom artifacts. The major findings center upon three themes regarding how this teacher and these students had largely positive evolution learning experiences even as some students continued to reject evolution. First, the teacher strategically positioned himself in two ways: using his unique “local” trusted position in the community and school and taking a position in which he did not personally represent science by instead consistently teaching evolution “according to scientists.” Second, his instruction honored local “rural” funds of knowledge with respect to local knowledge of nature and by treating students’ religious knowledge as a form of local expertise about one set of answers to questions also addressed by evolution. Third, the teacher served as a border crossing “tour guide” by helping students identify how the culture of science and the culture of their lifeworlds may differ with respect to evolutionary theory. Students negotiated the cultural borders for learning evolution in several ways, and different types of border crossings are described. The students respected the teacher’s apparent neutrality, sensitivity toward multiple positions, explicit attention to religion/evolution, and transparency of purposes for teaching evolution. These findings add to the current literature on rural science education by highlighting local funds of knowledge for evolution learning and how rural teachers may help students navigate seemingly hazardous scientific topics. The study’s findings also add to the current evolution education literature by examining how students’ religious perspectives may be respected as a form of expertise about questions of origins by allowing students to examine similarities and differences between scientific and religious approaches to questions of biological origins and change.  相似文献   

5.
This paper presents findings from a study conducted in an urban elementary school in the United States with an English language learner (ELL) student and two teachers engaged in collaborative teaching in an inclusion science classroom. This study examines the efficacy of utilising cogenerative dialogues between an ELL student and his science teacher and English as second language teacher to improve instructional practices enacted during coteaching. Drawing from field notes, teacher and student interviews, and video captured during cotaught science lessons and during cogenerative dialogues between the student and his coteachers, we examined the ways in which cogenerative dialogue expands teachers’ agency to adapt curriculum and implement instructional strategies that can better meet the needs of their students. At the same time, we examined the ways in which participation in cogenerative dialogues with his teachers expanded this student’s agency as a science learner and a language learner.  相似文献   

6.
The purpose of this study is to provide insight into short-term professionalization of teachers regarding teaching socioscientific issues (SSI). The study aimed to capture the development of science teachers' pedagogical content knowledge (PCK) for SSI teaching by enacting specially designed SSI curriculum materials. The study also explores indicators of stronger and weaker development of PCK for SSI teaching. Thirty teachers from four countries (Cyprus, Israel, Norway, and Spain) used one module (30–60 min lesson) of SSI materials. The data were collected through: (a) lesson preparation form (PCK-before), (b) lesson reflection form (PCK-after), (c) lesson observation table (PCK-in-action). The data analysis was based on the PCK model of Magnusson, Krajcik, and Borko (1999). Strong development of PCK for SSI teaching includes “Strong interconnections between the PCK components,” “Understanding of students' difficulties in SSI learning,” “Suggesting appropriate instructional strategies,” and “Focusing equally on science content and SSI skills.” Our findings point to the importance of these aspects of PCK development for SSI teaching. We argue that when professional development programs and curriculum materials focus on developing these aspects, they will contribute to strong PCK development for SSI teaching. The findings regarding the development in the components of PCK for SSI provide compelling evidence that science teachers can develop aspects of their PCK for SSI with the use of a single module. Most of the teachers developed their knowledge about students' understanding of science and instructional strategies. The recognition of student difficulties made the teacher consider specific teaching strategies which are in line with the learning objectives. There is an evident link between the development of PCK in instructional strategies and students' understanding of science for SSI teaching.  相似文献   

7.
Teachers play a critical role in successfully implementing science education reforms in the United States to provide high-quality science learning opportunities to all students. However, the differentiated ways in which teachers make decisions about their science teaching are not well understood. This study takes a person-centered approach by applying latent profile analysis to examine how cognitive (pedagogical content knowledge) and motivational (instructional goal orientations, self-efficacy beliefs, and reform values) characteristics combine to form science teacher profiles in middle school. Predictors of profile membership (bachelor's degree, school %FRL) and both teacher (science instructional practices) and student (science achievement, engagement, and self-efficacy) outcomes related to the teacher profiles were also examined. Five science teacher profiles were identified (severely discouraged but reform oriented, discouraged but reform oriented, conventional, confident and mastery oriented, and confident with multiple goal approaches) that represented unique configurations of cognitive and motivation characteristics. Additionally, findings showed that the teacher profiles were significantly related to three dimensions of science instructional practice including communication, discourse, and reasoning. Finally, the teacher profiles were significantly related to student science achievement and motivational outcomes. Implications for differentiated approaches to teacher professional learning and supports for science instruction are discussed.  相似文献   

8.
This investigation explores the effectiveness of a teacher preparation program aligned with situated learning theory on preservice science teachers' use of technology during their student teaching experiences. Participants included 26 preservice science teachers enrolled in a 2‐year Master of Teaching program. A specific program goal was to prepare teachers to use technology to support reform‐based science instruction. To this end, the program integrated technology instruction across five courses and situated this instruction within the context of learning and teaching science. A variety of data sources were used to characterize the participants' intentions and instructional practices, including classroom observations, lesson plans, interviews, and written reflections. Data analysis followed a constant comparative process with the goal of describing if, how, and why the participants integrated technology into their instruction and the extent to which they applied, adapted, and innovated upon what they learned in the science teacher preparation program. Results indicate that all participants used technology throughout their student teaching for reform‐based science instruction. Additionally, they used digital images, videos, animations, and simulations to teach process skills, support inquiry instruction, and to enhance student engagement in ways that represented application, adaptation, and innovation upon what they learned in the science teaching methods program. Participants cited several features of the science teacher preparation program that helped them to effectively integrate technology into their instruction. These included participating in science lessons in which technology was modeled in the context of specific instructional approaches, collaborating with peers, and opportunities for feedback and reflection after teaching lessons. The findings of this study suggest that situated learning theory may provide an effective structure for preparing preservice teachers to integrate technology in ways that support reform‐based instruction. © 2013 Wiley Periodicals, Inc. J Res Sci Teach 50:348–379, 2013  相似文献   

9.
This study examined the effects of teachers’ biology-specific dimensions of professional knowledge – pedagogical content knowledge (PCK) and content knowledge (CK) – and cognitively activating biology instruction, as a feature of instructional quality, on students’ learning. The sample comprised 39 German secondary school teachers whose lessons on the topic neurobiology were videotaped twice. Teachers’ instruction was coded with regard to cognitive activation using a rating manual. Multilevel path analysis results showed a positive significant effect of cognitive activation on students’ learning and an indirect effect of teachers’ PCK on students’ learning mediated through cognitive activation. These findings highlight the importance of PCK in preservice biology teachers’ education. Items of the rating manual may be used to provide exemplars of concrete teaching situations during university seminars for preservice teacher education or professional development initiatives for in-service teachers.  相似文献   

10.
A number of science education policy documents recommend that students develop an understanding of the enterprise of science and the nature of science (NOS). Despite this emphasis, there is still a gap between policy and practice. Teacher professional literature provides one potential venue for bridging this gap, by providing “activities that work” (Appleton in elementary science teacher education: International perspectives on contemporary issues and practice. Lawrence Erlbaum Associates, Mahwah, NJ, 2006) that can scaffold teachers’ developing pedagogical content knowledge (PCK) for teaching NOS. We analyzed articles published in the NSTA journal The Science Teacher (1995–2010) in terms of the degree to which they provide appropriate model activities and specific information that can support the development of teachers’ PCK for teaching NOS. Our analysis revealed a diversity of NOS aspects addressed by the authors and a wide range of variation in the percent of articles focused on each aspect. Additionally, we found that few articles provided robust information related to all the component knowledge bases of PCK for NOS. In particular, within the extant practitioner literature, there are few models for teaching the aspects of NOS, such as the function and nature of scientific theory. Furthermore, though articles provided information relevant to informing teachers’ knowledge of instructional strategies for NOS, relevant information to inform teachers’ knowledge of assessment in this regard was lacking. We provide recommendations for ways in which the practitioner literature may support teachers’ teaching of NOS through more robust attention to the types of knowledge research indicates are needed in order to teaching NOS effectively.  相似文献   

11.
Science learning environments should provide opportunities for students to make sense of and enhance their understanding of disciplinary concepts. Teachers can support students’ sense-making by engaging and responding to their ideas through high-leverage instructional practices such as formative assessment (FA). However, past research has shown that teachers may not understand FA, how to implement it, or have sufficient content knowledge to use it effectively. Few studies have investigated how teachers gather information to evaluate students’ ideas or how content knowledge factors into those decisions, particularly within the life science discipline. We designed a study embedded in a multi-year professional development program that supported elementary teachers’ development of disciplinary knowledge and FA practices within science instruction. Study findings illustrate how elementary teachers’ life science content knowledge influences their evaluation of students’ ideas. Teachers with higher levels of life science content knowledge more effectively evaluated students’ ideas than teachers with lower levels of content knowledge. Teachers with higher content exam scores discussed both content and student understanding to a greater extent, and their analyses of students’ ideas were more scientifically accurate compared to teachers with lower scores. These findings contribute to theory and practice around science teacher education, professional development, and curriculum development.  相似文献   

12.
In the context of teacher education, it could well be suggested that assessment activities that build on formative interactions between student teachers and teacher educators might offer new windows into better understanding teaching and learning. This paper presents findings from a study into a primary science teacher education initiative that seeks to build the foundations on which 24 primary science student teachers, through the use of formative assessment of their science teaching and learning, can begin developing their pedagogical content knowledge (PCK). In the project, formative assessment consists of activities used by teacher educators to stimulate interactions, self- and peer-assessment in order to provide insights into how student teachers develop their PCK during a semester. Content Representations (CoRes), were used as a tool to unpack the student teachers’ approach to teaching a science topic and the reasons for that approach. The results indicate that the use of CoRes, together with subsequent self-assessment and formative interactions with teacher educators and peers, do have the potential for PCK development for student teachers. The results further highlight the need for developing reliable and valid tools for capturing and assessing student teachers’ PCK in pre-service teacher education.  相似文献   

13.
In this study, I, the first author as a Thai teacher educator employed self-study as a research methodology to investigate my own understandings, questions, and curiosities about pedagogical content knowledge (PCK) for teaching science student teachers and the ways I engaged student teachers in a field-based science methods course designed to help them to develop their PCK. Qualitative data gathered included: the syllabi, handouts, work submitted by student teachers, student teachers’ journal entries, my journal entries, and video recordings of my classroom teaching. Data were analysed using an inductive process to identify ways in which I attempted to enhance student teachers’ PCK. The contributions of this study are insights generated to help teacher educators think about how to support and develop student teachers’ PCK. Some of these contributions are enhancing teacher educators’ PCK for teaching science teachers, developing PCK for teaching science, and designing a science methods course in science teacher preparation programmes.  相似文献   

14.
This paper describes a method of analysing teacher growth in the context of science education. It focuses on the identification of pathways in the development of secondary school teachers’ pedagogical content knowledge (PCK) by the use of the interconnected model of teachers’ professional growth (IMTPG).The teachers (n = 12) participated in a one-year action research project focused on their individual concerns related to teaching science. The use of the IMTPG revealed that teachers use different pathways of learning to develop different aspects of their PCK. For each PCK component, three distinct pathways could be identified, two of which clearly were associated with professional growth. When examining these two pathways in detail, it was found that (1) teachers learned about new instructional strategies and assessment methods mostly through literature reviews and discussions with peers and (2) teachers who analyzed and reflected on student learning as it happened in their classrooms developed understandings that helped them to select and apply instructional strategies to further promote student learning. Both the analytical method as well as the identification of the different developmental pathways help to better understand teacher development in the context of classroom practices.  相似文献   

15.
Instructional practice plays a significant role in understanding teachers’ pedagogical content knowledge (PCK). The aim of the study reported on was to compare mathematics and technology pre-service teachers’ knowledge of PCK. The study used a case study approach of five mathematics and five technology pre-service teachers with a total of ten. Data was collected in seven public schools around Gauteng province in South Africa. The observation technique was employed in order to understand students’ classroom practice, using a video camera to capture the setting. One lesson of 45 minutes presented by each pre-service teacher, rendering a total of ten lessons, was observed. The study adapted the theoretical framework of PCK (Shulman 1987). The study scrutinised the data based on the qualitative content analysis method and found that most pre-service teachers in both mathematics and technology possess a limited knowledge of PCK. In both subjects, most of the pre-service teachers’ classroom practice did not exhibit comprehensive knowledge of the subject matter or knowledge of the learners. However, the difference is that only mathematics pre-service teachers have some knowledge of assessment. The data also indicate that “9E” instructional practice can be a valuable tool to enhance field-specific PCK within the field of mathematics and technology education subjects. Therefore, the study proposes further investigation of the “9E” instructional model that could be used as field-specific PCK within the fields of mathematics, science and technology.  相似文献   

16.
This study explored the pedagogical content knowledge (PCK) and its development of four experienced biology teachers in the context of teaching school genetics. PCK was defined in terms of teacher content knowledge, pedagogical knowledge and knowledge of students’ preconceptions and learning difficulties. Data sources of teacher knowledge base included teacher-constructed concept maps, pre- and post-lesson teacher interviews, video-recorded genetics lessons, post-lesson teacher questionnaire and document analysis of teacher's reflective journals and students’ work samples. The results showed that the teachers’ individual PCK profiles consisted predominantly of declarative and procedural content knowledge in teaching basic genetics concepts. Conditional knowledge, which is a type of meta-knowledge for blending together declarative and procedural knowledge, was also demonstrated by some teachers. Furthermore, the teachers used topic-specific instructional strategies such as context-based teaching, illustrations, peer teaching, and analogies in diverse forms but failed to use physical models and individual or group student experimental activities to assist students’ internalization of the concepts. The finding that all four teachers lacked knowledge of students’ genetics-related preconceptions was equally significant. Formal university education, school context, journal reflection and professional development programmes were considered as contributing to the teachers’ continuing PCK development. Implications of the findings for biology teacher education are briefly discussed.  相似文献   

17.
Active‐learning labs for two topics in high school biology were developed through the collaboration of high school teachers and university faculty and staff and were administered to 408 high school students in six classrooms. The content of instruction and testing was guided by State of Texas science objectives. Detailed teacher records describing daily classroom activities were used to operationalize two types of instruction: active learning, which used the labs; and traditional, which used the teaching resources ordinarily available to the teacher. Teacher records indicated that they used less independent work and fewer worksheets, and more collaborative and lab‐based activities, with active‐learning labs compared to traditional instruction. In‐class test data show that students gained significantly more content knowledge and knowledge of process skills using the labs compared to traditional instruction. Questionnaire data revealed that students perceived greater learning gains after completing the labs compared to covering the same content through traditional methods. An independent questionnaire administered to a larger sample of teachers who used the lab‐based curriculum indicated that they perceived changing their behaviors as intended by the student‐centered principles of the labs. The major implication of this study is that active‐learning–based laboratory units designed and developed collaboratively by high school teachers and university faculty, and then used by high school teachers in their classrooms, can lead to increased use of student‐centered instructional practices as well as enhanced content knowledge and process learning for students. © 2007 Wiley Periodicals, Inc. J Res Sci Teach 44: 960–979, 2007  相似文献   

18.
Experienced teachers possess a unique teaching knowledge comprised of an inter-related set of knowledge and beliefs that gives direction and justification to a teacher’s actions. This study examined the expansion of two components of pedagogical content knowledge (PCK) of three in-service teachers in the course of a professional development program aimed at designing new teaching and learning materials suggested by the teachers themselves. The research presents an enlargement of previous PCK representations by focusing on a detailed representation of two main PCK domains: teaching and learning, including ten PCK components that emerged in the course of data analysis. This representation enabled revealing the unique PCK held by each teacher and to characterize the expansion of the two components of the participating teachers’ PCK during the long-term professional development program. Retention of major parts of the expanded PCK a year after termination of the program implies that designing and implementing new teaching and learning materials based on the teachers’ experiences, needs, and knowledge in a workshop format accompanied by biology and science education courses might provide a powerful means for PCK expansion. We recommend that designers of professional development programs be aware of the unique PCK held by each teacher in order to promote meaningful professional development of each teacher. Moreover, the PCK representations that were identified in the course of this study enabled clarifying the “orientation toward teaching science” category of PCK which appears to be unclear in current literature.  相似文献   

19.
Pedagogical content knowledge (PCK) is a type of teacher knowledge to be developed by a teacher. PCK is said to contribute to effective teaching. Most studies investigated the development of PCK and its influence on students’ learning from the teachers’ perspectives. Only a limited number of studies have investigated the components of science teachers’ PCK that helped students’ learning from the perspective of students. Thus, it is the aim of this study to investigate the level of science teachers’ PCK from students’ perspective, in particular whether or not students of different achieving ability had different views of teachers’ PCK in assisting their learning and understanding. Based on the PCK research literature, six components of PCK have been identified, which were as follows: (1) subject matter knowledge, (2) knowledge of teaching strategies, (3) knowledge of concept representation, (4) knowledge of teaching context, (5) knowledge of students, and (6) knowledge of assessment in learning science. A questionnaire consisting of 56 items on a five-point Likert-type scale were used for data collection from 316 Form Four students (16 years old). One-way analysis of variance revealed that the differences in science teachers’ PCK identified by students of different achieving abilities were statistically significant. Overall, students of various academic achieving abilities considered all the components of PCK as important. The low-achieving students viewed all the components of PCK as being less important compared to the high and moderate achievers. In particular, low-achieving students do not view ‘knowledge of concept representation’ as important for effective teaching. They valued the fact that teachers should be alert to their needs, such as being sensitive to students’ reactions and preparing additional learning materials. This study has revealed that PCK of science teachers should be different for high and low-achieving students and knowledge of students’ understanding plays a critical role in shaping teachers PCK.  相似文献   

20.
The present study was designed to identify and characterize the major factors that influence entering science teacher candidates’ preferences for different types of instructional activities, and to analyze what these factors suggest about teacher candidates’ orientations towards science teaching. The study involved prospective teachers enrolled in the introductory science teaching course in an undergraduate science teacher preparation program. Our analysis was based on data collected using a teaching and learning beliefs questionnaire, together with structured interviews. Our results indicate that entering science teacher candidates have strong preferences for a few activity types. The most influential factors driving entering science teacher candidates’ selections were the potential of the instructional activities to motivate students, be relevant to students’ personal lives, result in transfer of skills to non‐science situations, actively involve students in goal‐directed learning, and implement curriculum that represents what students need to know. This set of influencing factors suggests that entering science teacher candidates’ orientations towards teaching are likely driven by one or more of these three central teaching goals: (1) motivating students, (2) developing science process skills, and (3) engaging students in structured science activities. These goals, and the associated beliefs about students, teaching, and learning, can be expected to favor the development or enactment of three major orientations towards teaching in this population of future science teachers: “motivating students,” “process,” and “activity‐driven.”  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号