首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
题目已知:在△ABC 中,AB=AC,D 是 BC 边上一点.求证:AB~2=AD~2+BD·CD.思路分析1:因为 BD、CD 在同一边上,从而考虑相交弦定理,于是作△ABC 的外接圆进行论证.证法1:作△ABC 的外接圆 O,延长AD 交⊙O于 E,连结 BE(如图1),∵AB=AC,∴∠1=∠E.∴△ABD∽△AEB,∴AB~2=AD·AE=AD·(AD+DE)=AD~2+AD·DE.  相似文献   

2.
全日制十年制学校初中课本《数学》第五册第184页第18题是求证:在园内接四边形ABCD中,AB·CD+BC·AD=AC·BD(提示:设法在BD上取P点使AB·CD=AC·BP)。证明:从A引直线AP交BD于P, 使∠BAP=∠CAD又有∠ABP=∠ACD, ∴△ABP∽△ACP, 图1 ∵BP:DC=AB:AC, ∴AB·DC=AC·BP。……①又∵∠BAP=∠CAD, ∴∠BAC=∠PAD, 又∠ACB=∠ADP。∴△ABC∽△APD, 则 BC:PD=AC:AD, ∴AD·BC=AC·PD……②①+②得AB·CD+BC·AD =AC(BP+PD)=AC·BD。数学老师告诉我们,这是平面几何中一个相当重要的定理,叫做Ptolemy定理:“园内接四边形中,二条对角线所包距形面积等于一组对边所包距形面积与另一组对边所  相似文献   

3.
与角平分线有关的证明问题在几何学习中屡见不鲜。由于角平分线具备“角相等”和“公共边”这两个自身条件,因此,解决这类问题,常可考虑沿角平分线两侧构造全等三角形的方法。例1如图1,在△ABC中,∠BAC的外角平分线上取一点D,连结BD、CD。求证:BD+CD>AB+AC·证明:在BA延长线上截取AE=AC,连结DE.图1∵∠1=∠2,AD公用∴△ADC≌△ADE∵ED=CD在△EBD中,ED+BD>BE,∴BD+CD>AB+AC·例2如图2,△ABC中,AD平分∠BAC交BC于D,AC=AB+BD·求证:∠ABC=2∠C·证明:延长AB到E,使AE=AC,连结DE·图2∵AE=AC,∠1=∠2,AD=A…  相似文献   

4.
一、填空题(每空2分,共18分)1.两个能够完全重合的图形称为____________,全等图形的__________和大小完全相同.2.如图1,若△OAD≌△OBC,且∠O=65°,∠C=20°则∠OAD=_____________.3.如图2,已知AB=AD,∠1=∠2,要使△ABC≌△ADE,还需添加的条件是(只需填一个)____________.4.如图3,P是∠AOB的平分线上一点,PC⊥OA于C,PD⊥OB于D,则图中相等的线段有__________________.5.在Rt△ABC与Rt△A′B′C′中,∠C=∠C′=90°,∠A=∠B′,AB=A′B′,则下列结论①AC=A′C′,②BC=B′C′,③AC=B′C′,④∠A=∠A′中,正确的是____…  相似文献   

5.
如图一,在△ABC中,AD为∠BAC的平分线,则AD~2 BD·DC=AB·AC. 这就是平面几何中著名的斯库顿定理.它的证法简便. 证明:延长∠BAC的平分线AD交⊙ABC于E,连结BE.∴∠E=∠C,∠BAE=∠DAC,∵△ABE∽△ADCAB/AE=AD/AC,∴AD(AD DE)=AB·AC.即AD~2 AD·DE=AB·AC,由相交弦定理得AD·DE=BD·DC,∴AD~2 BD·DC=AB·AC.  相似文献   

6.
每期一题     
题:△ABC是⊙○内接锐角三角形,射线AO、BO、CO各交⊙○于A′、B′、C′。记BC=a、CA=b、AB=C,BC′=B′C=a′CA′=C′A=b′、AB′=A′B=c′。求证:abc=ab′c′+a′bc′+a′b′c。分析:本题结论可以改写成: b′c′/bc+c′a′/ca+a′b′/ab=1; 由于∠BA′C与∠BAC互补、∠CB′A与∠CBA互补、∠AC′B与∠ACB互补,  相似文献   

7.
    
☆基础篇课时一圆的有关性质诊断练习一、填空题1.圆是__点的集合.到点A距离等于4的点的轨迹是__.2.菱形ABCD对角线交点为O,且AC=8,AB=5,以O为圆心,3为半径作⊙O,则A、C在⊙O__,B、DD在⊙O__.3.等腰△ABC内接于⊙O,∠ACB=120°,AC=BC=5,则⊙O的半径为__,AB=__.4.弦AD、BC相交于E,连结AB、BD、DC、CA,则图形中有__对相等圆周角,有__对相似三角形;若∠BAD=30°,∠BED=80°,则∠ADC=__°;若∠BAD=∠CAD,则图形中共有__对相似三角形,由__∽__,可得AB·AC=AD·AE,由__∽__,可得BD2=ED·DA.5.若圆内接四边形ABCD 的内 角  相似文献   

8.
A卷:1.D.2.A.3.D.4.D.5.C.6.D.7.B.8.A.9.2∶3.10.3-25.11.4.12.20.13.4.8.14.(1,-2).15.230.16.14494.17.(1)由AB=AC得∠ABD=∠ACE,再由AB2=DB·CE,AB=AC得BADB=CAEC,故△ADB∽△EAC.(2)110°.18.(1)答案不惟一,如∠ACP=∠B,或AC2=AP·AB等.(2)26.19.(1)由△A′PP′∽△A′B′B可得AA′′BP′=BPBP′′,即A′2B′=19.8,所以A′B′=10.(2)B′Q=AB′-A′P-PQ=10-2-6.5=1.5,再根据AQ′BB′′=AQ′AQ′得110.5=1AA.8′,所以AA′=12.20.(1)一定相似.因为AD=DB,FD⊥AB,所以FA=FB,所以∠A=∠FBD,因为…  相似文献   

9.
一、△ABC的三边长分别为a,b,c,b相似文献   

10.
初中《几何》第二册(人教版)第49页有一道例题:已知,如图1,在△ABC 和△A′B′C′中,CD、C′D′分别是高,并且 AC=A′C′、CD= C′D′、∠ACB=∠A′C′B′,求证:△ABC≌△A′B′C′.证明过程详见课本.若把例题中条件∠ACB=∠A′C′B′换成 BC=B′C′,那么  相似文献   

11.
一、将四边形问题转化为平行四边形问题例 1.已知 :四边形 ABCD中 ,AB=DC,AC=BD,且 AD≠BC。求证 :四边形 ABCD是等腰梯形。分析 :欲证此四边形为等腰梯形 ,可由定义来证明。从已知条件可看出 ,只要证明AD∥ BC即可。由此联想到构造平行四边形即可证得。证明 :过点 D作 DE∥ A B交BC于点 E,则∠ ABC=∠ DEC。∵ AB=DC,AC=DB,BC=CB,∴△ ABC≌△ DCB。∴∠ ABC=∠ DCB,∠ DEC=∠ DCB。∴ AB=DC=DE,∵ AB∥ DE,∴四边形 ABED是平行四边形 ,∴ AD∥ BC。又∵ AD≠ BC,∴四边形 ABCD是等腰梯形。二、将四…  相似文献   

12.
在日常生活和生产实际中常会碰到很多形状相同,大小不一定相同的图形,在数学上统称为相似形.相似三角形是其中最简单的相似形,相似三角形的识别和性质是学习重要内容,必须切实学好.一、弄清相似三角形的概念两个三角形中,如果它们的对应角相等,它们的对应边成比例,那么这两个三角形相似.例如,在△ABC与△A′B′C′中,如果∠A=∠A′,∠B=∠B′,∠C=∠C′,AA′BB′=BB′CC′=CC′AA′,那么△ABC∽△A′B′C′.如果记AA′BB′=BB′CC′=CC′AA′=k,那么比值k叫做这两个相似三角形的相似比.二、掌握相似三角形的识别识别两个三…  相似文献   

13.
在证明题中,常会出现二倍角问题,此类问题往往有一定难度,需要认真分析已知与结论之间的联系,添加适当的辅助线,从而化难为易.现举例说明. 一、作倍角的平分线例1 已知:如图1,在△ABC中,∠B=2∠A,AB=2BC.求证:△ABC是直角三角形. 证明:作∠ABC的平分线BD交AC于点D,取AB的中点E,连结DE. ∵∠ABC=2∠A,∠ABC=2∠1=2∠2,∴∠A=∠1=∠2.即△ABD为等腰三角形.∵E为AB边中点,∴DE⊥AB.∵BE=12AB=BC,∠1=∠2,BD=BD,∴△BDE≌△BDC.∴∠BCD=∠BED=90°.即△ABC为直角三角形.二、构造倍角的等角…  相似文献   

14.
1.巧构全等三角形证线段相等例 1.已知 ,如图 ,AB=DE,直线 AE、BD相关于点 O,∠ B与∠ D互补。  求证 :AO=ED。证明 :过点 A作 AC∥ DE交 BD于 C,则∠ D=∠ 2。∵∠ 1 ∠ 2 =180°,∠ B ∠ D=180°,∴∠ 1=∠ B,∴ AB=AC,∴ AB=DE=CA。在△ ACO和△ EDO中 ,∠ AOC=∠ EOD,∠ 2=∠ D,AC=DE;∴△ ACO △ EDO( AAS) ,∴ AO=ED。2 .巧构全等三角形证角相等例 2 .已知等边△ ABC的边长为 a,在 BC的延长线上取一点 D,使 CD=b,在 BA延长线上取一点 E,使 AE=a b。求证 :∠ ECD=∠ EDC。证明 :过 E作 EF∥ AC…  相似文献   

15.
《时代数学学习》2005,(12):41-41
图1如图1,连结CD,将△ACD以D为旋转中心顺时针旋转60°到△BC′D,连接CC′则∠C′DB=∠CDA,CD=C′D,BC′=AC=b,∴∠C′DC=∠BDA=60°.∴△CDC′是等边三角形,∴CC′=CD.∴在△CBC′中,CC′≤CB+C′B=a+b.∴CD≤a+b.当C′,B,C在同一条直线上时,CD取最大值a+b.这时∠DBC′+∠DBC=180°.又∠D B C′=∠D A C,∠D B A=∠DAB=60°,∠BCA+∠CBA+∠CAB=180°,∴∠DAC+∠DBC=180°,∴∠CBA+∠CAB=60°,∴∠ACB=120°.故当∠ACB为120°时,CD取最大值,最大值为a+b.问题2.10参考答案…  相似文献   

16.
设K的妙用     
在解有“比”的习题时 ,设 K可以使含“比”的项用 K的代数式表示 ,有利于思路的展开 ,达到顺利解题的目的。例 1 .在△ ABC中 ,已知∠ A∶∠ B∶∠ C=1∶ 2∶ 3,求 a∶ b∶ c。略解 :设∠ A=K,则∠ B=2 K,∠C=3K,由∠ A ∠B ∠ C=1 80°,得∠ A=30°、∠ B=60°、∠C=90°。设 a=K′,则 c=2 K′。∴b=3 K′,∴ a∶ b∶ c=K′∶ 3K′∶ 2 K′=1∶ 3∶ 2。  例 2 .如图 ,在△ ABC中 ,∠ ACB =90°,CD⊥ AB,若 AC=6,sin B=35。求 CD。略解 :由∠ACB=90°,CD⊥AB易得∠ B=∠ ACD。∵ sin B=35,∴ sin∠ ACD=ADAC=35…  相似文献   

17.
一、掌握基本图形图 1为 A型图 ,条件是 DE∥ BC,基本结论是 ADDB=AEEC,ADAB=AEAC=DEBC。图 2为非 A型图 ,条件是∠ 1=∠ 2 ,基本结论是 ADAC=AEAB=DECB。图 3为 X型图 ,条件是 AB∥ CD,基本结论是AEDE=BECE=ABCD。图 4为非 X型图 ,条件是∠ A =∠ C,基本结论是 AECE= BEDE=ABCD。图 5为母子型图 ,条件是 CD为 Rt△ ABC斜边AB上的高 ,基本结论是 CD2 =AD· DB,  AC2 =AD· AB,BC2 =BD· AB。图 6为 E型图 ,条件是 AD∥ EF∥ BC,基本结论是 AEEB=DFFC。二、辨认基本图形例 1.如图 5 ,在△ AB…  相似文献   

18.
定理 设P、Q为△ABC内两点 ,则AP·AQAB·AC +BP·BQBA·BC+CP·CQCA·CB≥ 1 . ( )等式当且仅当P、Q为△ABC等角共轭点 (即∠PAB=∠QAC ,∠PBC =∠QBA ,∠PCB =∠QCA)时成立 .证明 :如图 ,顺次以BC、CA、AB为对称轴作△PBC、△PCA、△PAB的对称图形 ,分别为△A′BC ,△B′CA ,△C′AB ,连结A′Q、B′Q、C′Q ,则易知 (以S△ 表示面积 ) :S△AC′Q+S△AB′Q=12 AC′·AQsin∠C′AQ +12 AQ·AB′sin∠B′AQ =12 AP·AQ(sin∠C′AQ +sin∠B′AQ)=12 AP·AQ·2sin ∠C′AQ +∠B′AQ2 ·c…  相似文献   

19.
张景中教授在《从数学教育到教育数学》(四川教育出版社,1989年出版)一书中,针对中学数学教育提出了欧氏几何以质量公理体系和以面积理论为核心的解题方法,其中重要的定理是:共边比例定理:若直线PQ和直线AB相交于M点,则S△PAB∶S△QAB=PM∶QM;共角比例题定理:若在△ABC和△A′B′C′中,∠A=∠A′,若∠A ∠A′=180°,则S△ABC∶S△A′B′C′=AB·AC∶A′B′·A′C′,这两个定理在几何证题中是行之有效的.笔者在此基础上提出两个定理:定理1等高不等底的两个三角形面积之比等于对应底边的比.定理2等底不等高的两个三角形面积…  相似文献   

20.
线段的垂直平分线(中垂线)的性质定理及其逆定理在解题中有着广泛的应用,现举例说明,供同学们参考.一、用于求线段长例1如图1,在△ABC中,AB=AC,AC的垂直平分线分别交AB、AC于D、E.若AB=14,△BCD的周长为22,求BC的长.分析:由DE是AC的垂直平分线,得DA=DC.则BD+DC=BD+DA=AB=14.又BC+BD+DC=22,故BC=22-(BD+DC)=22-14=8.(具体证明过程请读者自行完成,下同)二、用于求角的度数例2如图2,AB⊥CD于B,AD的垂直平分线CF分别交AB、AD于E、F,EB=EF,求∠A的度数.分析:由CF是AD的垂直平分线想到连结DE,则AE=DE,故∠A=∠1…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号