首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The aim of the Primary and Early Childhood Science and Technology Education Project (PECSTEP) is to improve teaching and learning in science and technology of by increasing the number of early childhood and primary teachers who are effective educators. PECSTEP is based on an interactive model of teaching and systematically links work on gender with the learning and teaching of science and technology. The project involves: a year-long inservice program which includes the development of a science curriculum unit by teachers in their schools; linking of the preservice and inservice programs; and the development of support networks for teachers. Each phase of PECSTEP has been researched by means of surveys, interviews and the use of diaries. Research questions have focussed particularly on changes in: teachers’ and student teachers’ attitudes to teaching science and technology; their perceptions of science and technology; their perceptions of their students’ responses and their understandings of how gender relates to these areas. Specializations: primary science curriculum, science teacher education, sociology of science, technology and education. Specializations: gender and science/science teacher education, feminist theory, curriculum theory. Specializations: Science education research, curriculum development.  相似文献   

2.
This paper reports an investigation into gender, ethnicity and rurality on Fijian students’ perceptions of science. A questionnaire was administered to a large sample of Form 5 classes. All students had completed a four year integrated "Basic Science" course in the junior secondary school and were continuing their studies in the upper secondary school. The responses were analysed to determine the significance of gender, ethnicity and rurality on the students’ perceptions of science, attitudes to science in the world and to science in the school curriculum. Specializations: gender issues and affective aspects of science and technology education. Specializations: Constructivism in science education, development education and gender issues.  相似文献   

3.
One of the main goals of science education is the development of scientific investigation skills (Bryce & Robertson, 1985; Woolnough & Allsop, 1985). This paper describes a practical test instrument developed to assess students’ attainment of skills associated with problem analysis and planning experiments, collecting information, organizing and interpreting information, and concluding. During administration of the test, students verbalized their thoughts as they worked on the task and their performance was videotaped for analysis. Preliminary results reveal important areas of student weakness and lead to recommendations for curriculum reform. Specializations: Science teacher education, development of problem-solving expertise, concept development and conceptual change, assessment of laboratory work. Specializations: Chemistry education, concept development and conceptual change, role of laboratory work.  相似文献   

4.
This paper is based on findings from a three year collaborative action research project on classroom teaching and learning. The research, which involved 33 teachers, over two thousand students from six schools, and the authors, centred on exploring how various features of the classroom context influence teaching and learning processes. We interpret project findings as indicating the importance of balance between cognition and affect for effective teaching and learning. We advance the notion of challenge as a way of conceptualising this balance. Challenge comprises a cognitive/metacognitivedemand component and an affectiveinterest component. Nine major features of a teaching/learning event were found to interact to influence these cognitive and affective components of challenge. Specializations: Collaborative research on science teaching and learning; staff development and school improvement; quality of science education. Specializations: Learning and teaching science; pre-service teacher education. Specializations: teacher development in science education; technology education. Specializations: Science and teachnology curriculum, environmental education, educational disadvantage. Specializations: learning theory, probing of understanding, conceptual change.  相似文献   

5.
Much Catholic school and church rhetoric suggests that Catholic schools possess distinctive learning environments. Research into this aspect of Catholic schooling has been hampered by the lack of an appropriate assessment instrument. By drawing on contemporary church literature, the perceptions of personnel involved in Catholic education and existing classroom environment questionnaires, a new instrument was developed to assess student perceptions of classroom psychosocial environment in Catholic schools. The use of this instrument in 64 classrooms in Catholic and Government schools indicated significant differences on some scales. The distinctive nature of Catholic schooling did not extend to all classroom environment dimensions deemed important to Catholic education. Specializations: Catholic education, learning environments. Specializations: conceptual change in students, science teacher professional development, scientific reasoning, learning environments. Specializations: learning environments, science education, educational evaluation, curriculum.  相似文献   

6.
The Centre for Science and Mathematics Education Research at the University of Waikato is now undertaking the fourth Learning in Science Project, LISP(Teacher Development). The project builds on the findings of the previous three projects on the nature of learning and how to improve learning of science in classrooms. This two-year project is investigating the process of teacher development (as change in behaviour and beliefs) in the context of two kinds of teacher courses that acknowledge and take into account teachers’ existing ideas. This paper summarises the planning done for the first phase of the project as detailed in Bell, Kirkwood and Pearson (1990). Specializations: learning theories, curriculum development, equity issues. Specializations: science education, teacher professional development.  相似文献   

7.
Existing instruments in classroom environment research have limitations when subgroups are investigated or case studies of individual students conducted. This study reports the validation and development of a personal form of the Science Laboratory Environment Inventory which is better suited to such studies. Further, systematic differences between scores on the class and personal forms of the instrument are reported along with comparisons of their associations with inquiry skill and attitudinal outcomes. Specializations: Science education, Preservice science teacher education. Specializations: Learning environments, science education, educational evaluation, curriculum. Specializations: Curriculum, science education, science laboratory teaching.  相似文献   

8.
The study of Aboriginal culture in schools is supported by an increasing number of educators and government committees. However, in the absence of substantial research evidence, it has been difficult to propose justifiable curricular recommendations. The results of this exploratory study suggest that student attitudes towards Aborigines and Aboriginal culture can be improved by a science program which features an Aboriginal Studies component. Further, it is suggested that there is scope for the development of up-to-date curriculum materials and more comprehensive studies. Specializations: science education, teaching thinking. Specializations: science education, curriculum theory and design, teacher development.  相似文献   

9.
This paper discusses a study in progress which involves the use of a computerised research science database (Birds of the Antarctica) and specially designed curriculum materials. The purpose of the study is to investigate the extent to which students’ inquiry skills can be facilitated by the materials. Much attention is given in the programme to developing both students’ inquiry skills and their subject-matter knowledge. Year 11 and 12 students’ knowledge and skills development are interpreted as they interact with the computerised database and the curriculum materials. Preliminary findings about students’ abilities and perceptions are discussed and, in particular, constraints to the development of inquiry skills and construction of understanding are explored. Specializations: Science education, computers in education, learning environment.  相似文献   

10.
Preparing student teachers to teach thoughtfully and to consider carefully the consequences of their work involves creating opportunities for these beginning teachers to learn the skills and attitudes required for reflective practive. The case study described here explores one model of developing reflective practice and the congruent role that the source and use of knowledge of good teaching practice has in the process of developing the reflective practices of a post-graduate pre-service science teacher. Of particular interest are the facilitators and barriers she sees as affecting this development. Specializations: Science education, science teacher education Specializations: science education, science teacher education, conceptual change, learning environments, science reasoning.  相似文献   

11.
The history and philosophy of science components of the new British National Curriculum, and the American Association for the Advancement of Science Project 2061 curriculum guidelines are described. Some curriculum background is given to these developments; and a contemporary international project concerned with the utilization of the history and philosophy of science in science teaching and teacher education is also described. Finally the recent Discipline Review of the Training of Science and Mathematics Teachers in Australia is examined and criticised for its lack of recommendations about the need for appropriate history and philosophy of science courses to be included in science teacher education programmes. Specializations: history and philosophy of science, philosophy of education.  相似文献   

12.
A learning model for science education was proposed by Appleton (1989), based on Osborne and Wittrock’s generative learning theory (1983) and the Piagetian notions of disequilibrium, assimilation, and accommodation. The model incorporated many aspects of difficulties in learning science experienced by students, as revealed in the LISP projects and similar research. This paper examines how the model may be used to derive teaching strategies: components of the model are analysed in terms of specific types of teacher interventions which could facilitate students’ progress to accommodation. Some established teaching strategies are analysed in terms of these interventions. Specializations: primary teacher education, teaching strategies in science.  相似文献   

13.
Female teachers predominate in primary schools, and tend both to have more negative perceptions of their teaching skills in the physical sciences than males, and to expect girls to perform less well in these areas than boys, with likely serious consequences for girls. In this context the WASTE (Women and Science Teacher Education) Project sought to identify characteristics for teacher education programs which, in the opinion of their conveners, were productive in changing the attitude toward the teaching of science, or in changing the actual mode of teaching science, of women preservice and practising teachers. This paper reports the findings of the WASTE Project which surveyed the conveners of pre- and inservice programs and outlined the three models of exemplary practice used to classify responses:subject-centred, learner-centred andknowledge and person-centred. These models were based largely on differing explanations given for attitude change and on implicit concepts of knowledge, persons, and teaching and learning, and on the importance attributed to gender as a variable. Secondly, it shows how the Primary and Early Childhood Science and Technology Education Project, a gender-sensitive action-research project, was built on these findings. Finally, using these models, it offers a critique of the gender perspective of the Discipline Review of Teacher Education (DEET, 1989). Specializations: gender and science/science teacher education, feminist theory, curriculum theory.  相似文献   

14.
Routines are a fundamental aspect of classroom life and much attention in recent years has focused on routines for management. The concept of ‘behaviour settings’ and transitions between them as classroom routines is explained and exemplified. This view of routines provides an explanation for the difficulties faced by relieving teachers and student teachers who enter classrooms at mid year and suggests how new routines for complex science activity may be introduced. Specializations: Science curriculum science teacher education, teacher  相似文献   

15.
Advocates of constructivist science recommend that school science begins with children’s own constructions of reality. This notion of the way in which students’ knowledge of science grows is closely paralleled by recent research on teachers’ knowledge. This paper draws on case study evidence of teachers’ work to show how two experienced teachers’ attempts to develop alternative ways of teaching science involved reframing their previous patterns of understanding and practice. Two alternative interpretations of the case study evidence are offered. One interpretation, which focuses on identifying gaps in the teachers’ knowledge of science teaching, leads to theconstructivist paradox. The second interpretation explores theconstructivist parallel, an approach which treats the process of teachers’ knowledge growth with the same respect as constructivists treat students’ learning of science. This approach, the authors argue, is not only more epistemologically consistent but also opens up the possibilities of helping teachers lead students towards a constructivist school science. Specializations: Teachers’ knowledge and culture, educational change, qualitative research methodology. Specializations: Teachers’ knowledge, imagery and teachers’ work, teacher collegiality, supervision of teachers’ work.  相似文献   

16.
The recent nationalDiscipline Review of Teacher Education in Mathematics and Science outlines the lack of confidence of many preservice primary school teachers in teaching science. This study explores the attitudes of 170 primary school teachers in a Perth school district. By means of a simple questionnaire the perceptions and attitudes of these teachers about the following aspects have been examined: (1) background understanding of science; (2) preservice training; (3) interest in teaching science; (4) skill in teaching science; (5) confidence in the plant, animal, matter, energy areas, and (6) time spent teaching science. Besides compiling frequency responses for all teachers on these aspects comparisons have also been made on the basis of: (1) gender; (2) time of graduation, and (3) grade level taught. Specializations: Primary science, teacher attitudes. Specializations: Primary science, science teaching strategies, curriculum implementation, cognitive studies.  相似文献   

17.
What is written in reports to parents can provide insight into the perceptions of teachers of the various areas of the primary school curriculum. This paper reports the first stage of a research project focussing on reports as a guide to teachers' views of the relative importance of, and desired student outcomes in, key areas of the curriculum. Teacher comments in the end-of-the-year reports in one primary school were analysed. Specializations: science education, teacher education. Specializations: science education, teacher education.  相似文献   

18.
This study examines the differences between teachers' and students' perceptions of textbook usage in the science classroom. Four categories of use were identified: teacher directed student activities; teaching/studying guidance; as a source of information for the user and as preparation for assessment. The results of the study show that differences do occur between teachers and students with respect to their perceptions of the extent to which textbooks are used in the classroom and the purposes for which they are used, namely as a teaching/studying guide and as preparation for assessment. The findings of the study should be important to all those who use, write and publish high school science textbooks. Specializations: science education.  相似文献   

19.
This article reports a cross-national study of classroom environments in Australia and Indonesia. A modified version of the What Is Happening In this Class? (WIHIC) questionnaire was used simultaneously in these two countries to: 1) crossvalidate the modified WIHIC; 2) investigate differences between countries and sexes in perceptions of classroom environment; and 3) investigate associations between students’ attitudes to science and their perceptions of classroom environment. The sample consisted of 1,161 students (594 students from 18 classes in Indonesia and 567 students from 18 classes in Australia). Principal components factor analysis with varimax rotation supported the validity of a revised structure for the WIHIC. Two-way MANOVA revealed some differences between countries and between sexes in students’ perceptions of their classroom environments. Simple correlation and multiple regression analyses revealed generally positive associations between the classroom environment and student attitudes to science in both countries.  相似文献   

20.
A study of primary teacher trainees' perceptions and attitudes to science in 1990, has been useful in designing a semester unit aimed at increasing the confidence and interest of first year students at Victoria College. This paper outlines the background survey and discusses some, of the results and how they were used to develop the Professional Readiness Study-Understanding Science. This unit attempts to change attitudes by focussing on metacognition and encourages students to understand and control their own learning. Discussion involves teaching and learning strategies and alternative assessment approaches including the student's journal-the Personal Record. Specializations: technology for learning, health education. Specializations student understanding of biology, particularly genetics, evaluation. Specializations: children's learning in science, language in science.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号