首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Active control experiments on a newly proposed herringbone ribbed cable dome are described in this study. The cables of the dome are designed to have the ability to change length in order to adjust the geometrical configuration and the force distribution of the structure. Thereby, the dome is adaptable to different load cases. To begin with, for achieving the control amount for the active control test, an active control algorithm based on a nonlinear force method is presented. Then, an assembly and pre-stressing procedure is implemented. Active adjustment tests on three possible types of adjustable cables are performed to provide a practical method for the following active control test. The active control test demonstrates the applicability of the active control algorithm to achieve both force control and shape control. The method can be used to prevent failure of the cable domes due to slackening of the ridge cables and excessive displacements of the central section of the cable dome. The experiments verify the proposed control algorithm and the feasibility of the cable dome to adapt to excessive full span load and maintain the integrity of the structure.  相似文献   

2.
A European pressurized reactor (EPR) steel containment liner structure is comprised of the cylinder part and the dome part. An introduction of the steel liner structure is presented, followed by studies on the key mechanical features of the construction process using a refined finite element method. The steel liner was divided into several modules and then assembled during construction. Firstly, the equipment structure used to hoist the liner module was optimized, the lifting lug was analyzed using a multi-scale finite element model; the wind speed limit during lifting was also studied. Subsequently, the effect of internal forces during assembly between the liner modules, the lateral pressure of fresh concrete, the non-uniform temperature load, and the wind load on the cylinder module was analyzed. According to the time-varying structural performance during continuous concrete pouring and the hardening construction, an “overlapping element and birth-death element” technique was adopted to analyze the deformation and stress of the long-span steel dome liner. In addition, the stability-bearing capacities of the dome structure during construction were also studied, which took into consideration the effect of the initial geometrical imperfections and the elasto-plasticity of the material. This study presents a reference in terms of the mechanics of the construction scheme and the safety of such a type of structure.  相似文献   

3.
INTRODUCTIONThetensegritystructurecomposedofcablesandbarsisoftwotypes.Oneistheflexibletensegritystructure.Thistypeofstructurehasnostiffnessandtheshapeofthestructureisnotde terminedwhennoprestressisapplied .Theform findingprocessfortheinitialequilibriumisa…  相似文献   

4.
The nonlinear finite element method is used to analyze the geometrical nonlinear stability of cabletruss domes with different cable distributions. The results indicate that the critical load increases evidently when cables, especially diagonal cables, are distributed in the structure. The critical loads of the structure at different rise-span ratios are also discussed in this paper. It was shown that the effect of the tensional cable is more evident at small rise-span ratio. The buckling of the structure is characterized by a global collapse at small rise-span ratio; that the torsional buckling of the radial truss occurs at big rise-span ratio; and that at proper rise-span ratio, the global collapse and the lateral buckling of the truss occur nearly simultaneously. Project (No. 50278086) supported by the National Natural Science Foundation of China  相似文献   

5.
温度效应对主缆设计和施工有重要影响。在已有研究基础上,推导了分析主缆非均匀温变场问题的解析方法,其中的温度和静力应变均以无应变状态为参考态并考虑了主缆变形前后截面的变化,在理论上较已有方法更为合理,算例表明了其正确性。  相似文献   

6.
双边轮式斜拉桥悬索检测机器人设计与分析(英文)   总被引:1,自引:0,他引:1  
为了检测斜拉桥圆柱形悬索内部钢丝情况,设计了一种新型的双边轮式悬索爬升机器人,简述了其机械结构及运动方式,建立了爬升模型,分析了其机构的静态特性,并以直径为139 mm的悬索为例给出了相关设计参数.为使机构在电路系统故障时能安全回收,提出了一种基于反电动势理论的安全节能回收方法,应用曲柄滑块驱动气缸设计了气体阻尼机构,以消耗机构下降时因重力作用产生的多余动能,并建立了机构数学模型来仿真下降速度.试验结果表明,所设计的机器人能携带3.5 kg重物沿直径为65~205 mm的悬索平稳运行,满足了悬索检测的实用要求.  相似文献   

7.
温度荷载的作用是造成曲线箱梁桥工程问题的主要原因之一。文章运用曲线梁桥的微分方程,详细分析了混凝土曲线箱梁在均匀温度荷载作用下的效应,推导出了单跨曲线箱梁在径向受到约束时受均匀温度荷载作用产生的支反力及内力计算公式,并利用公式及有限元软件进行实例计算,验证了公式的准确性,得出了曲线箱梁桥在均匀温度荷载作用下,径向反力的大小与桥梁半径的二次方呈反比例关系,与桥梁的刚度、轴线圆心角呈正比例关系,即桥梁的半径越小,桥梁越宽,圆心角越大,桥梁的径向反力越大的结论,为解决曲线箱梁在均匀温度荷载作用下的工程问题提供理论支持。  相似文献   

8.
The cable-strut structural system is statically and kinematically indeterminate. The initial pre-stress is a key factor for determining the shape and load carrying capacity. A new numerical algorithm is presented herein for the initial pre-stress finding procedure of complete cable-strut assembly. This method is based on the linear adjustment theory and does not take into account the material behavior. By using this method,the initial pre-stress of the multi self-stress modes can be found easily and the cal-culation process is simplified and efficient also. Finally,the initial pre-stress and structural performances of a particular Levy cable dome are analyzed comprehensively. The algorithm has proven to be efficient and correct,and the numerical results are valuable for practical design of Levy cable dome.  相似文献   

9.
Alternate path(AP) method is the most widely used method for the progressive collapse analysis,and its application in frame structures has been well proved.However,the application of AP method for other structures,especially for cable-stayed structures,should be further developed.The four analytical procedures,i.e.,linear static,nonlinear static,linear dynamic,and nonlinear dynamic were firstly improved by taking into account the initial state.Then a cable-stayed structure was studied using the four improved methods.Furthermore,the losses of both one cable and two cables were discussed.The results show that for static and dynamic analyses of the cable-stayed bridges,there is large difference between the results obtained from simulations starting with either a deformed or a nondeformed configuration at the time of cable loss.The static results are conservative in the vicinity of the ruptured cable,but the dynamic effect of the cable loss in the area farther away from the loss-cable cannot be considered.Moreover,the dynamic amplification factor of 2.0 is found to be a good estimate for static analysis procedures,since linear static and linear dynamic procedures yield approximately the same maximum vertical deflection.The results of the comprehensive evaluation of the cable failure show that the tread of the progressive failure of the cable-stayed bridges decreases when the location of the failed cables is closer to the pylon.  相似文献   

10.
INTRODUCTIONTensionedmembranestructuresaremostsuitableforuseasroofstructureforavarietyofbuildingtypes,astheyprovidealight,elegant,andefficientstructurespanningoveralargeclearspace (Otto,1 973 ) .Examplesincludegymnasi ums,exhibitioncenters ,concertpavilio…  相似文献   

11.
以澳门轻轨C370标段项目为背景,开展了一联5×60m混凝土节段预制等高度变截面连续箱梁桥有限元计算,以研究该类箱梁在正常使用阶段和施工状态下的结构行为,不同工况组合下梁体应力状况与预应力变化等结构静力性能。研究结果表明:在承载能力极限状态,梁体内力满足规定,整体性较好;体内外预应力增量随跨中弯矩基本呈线性变化,静力增量及预应力损失值相对较小;在施工阶段,梁体下缘压应力储备充足,满足运梁安全性要求。  相似文献   

12.
纺织工业厂房多数采用锯齿形排架结构 ,可采用力法对具有跨变的单层铰接排架建立基本方程求精确解  相似文献   

13.
The anchor stress extent of a prestress anchor cable project has a direct relation with the project safety and performance. Prestressed tensioning method is a kind of nondestructive testing method, by which a reverse stretching load is applied on the external exposure section of anchor cable under construction or in service, and then the elongation variation of stress bars is measured to determine the anchor stress. We elaborated the theory and testing mechanism of prestressed tensioning method, and systematically studied key issues during the prestressed tensioning process of anchor cable by using physical model test, including the composition of tension stress-elongation curve, the variation of anchor stress, the compensation of locked anchor stress, and the judgment of anchor stress, and verified the theory feasibility of prestressed tensioning method. A case study on slope anchor cable of one highway project was conducted to further discuss on the test method, operation procedures and judgment of prestressed tensioning method on obtaining anchor stress, and then the test data of three situations were analyzed. The result provides a theoretical basis and technical base for the application of prestressed tensioning method to the evaluation of construction quality and operation conditions of anchor cable project.  相似文献   

14.
In routine design of tensioned membrane st ructures, the membrane is gen erally modeled using space membrane elements and the cables by space cable eleme nts, with no sliding allowed between the membrane and the cables. On the other h and, large deflections are expected and sliding between the membrane and the cab les is inevitable. In the present paper, the general finite element code ABAQUS was employed to investigate the influence of cable sliding on membrane surface o n the structural behavior. Three analysis models were devised to fulfill this pu rpose: (1) The membrane element shares nodes with the cable element; (2) The cab le can slide on the membrane surface freely (without friction) and (3) The cable can slide on the membrane surface, but with friction between the cable and the membrane. The sliding problem is modeled using a surface-based contact algorithm . The results from three analysis models are compared, showing that cable slidin g has only little influence on the structure shape and on the stress distributio ns in the membrane. The main influence of cable sliding may be its effect on the dynamic behavior of tensioned membrane structures.  相似文献   

15.
The construction of the cables is a key step for erecting suspen-dome structures. In practical engineering, it is difficult to ensure that the designed pre-stresses of cables have been exactly introduced into the structures in the site; so it is necessary to evaluate the influence of the variation of the pre-stresses on the structural behavior. In the present work, an orthogonal design method was employed to investigate the pre-stressed cables'sensitivity to the suspen-dome system. The investigation was concentrated on a Kiewitt suspen-dome. Parametric studies were carried out to study the sensitivity of the structure's static behavior, dynamic behavior, and buckling loads when the pre-stresses in the cables varied. The investigation indicated that suspen-dome structures are sensitive to the pre-stresses in all cables; and that the sensitivity depended on the location of the cables and the kind of structural behavior. Useful suggestions are given at the end of the paper.  相似文献   

16.
The construction of the cables is a key step for erecting suspen-dome structures. In practical engineering, it is difficult to ensure that the designed pre-stresses of cables have been exactly introduced into the structures in the site; so it is necessary to evaluate the influence of the variation of the pre-stresses on the structural behavior. In the present work, an orthogonal design method was employed to investigate the pre-stressed cables' sensitivity to the suspen-dome system. The investigation was concentrated on a Kiewitt suspen-dome. Parametric studies were carried out to study the sensitivity of the structure's static behavior, dynamic behavior, and buckling loads when the pre-stresses in the cables varied. The investigation indicated that suspen-dome structures are sensitive to the pre-stresses in all cables; and that the sensitivity depended on the location of the cables and the kind of structural behavior. Useful suggestions are given at the end of the paper.  相似文献   

17.
Stay cables, the primary load carrying components of cable-stayed bridges (CSBs), are characterised by high flexibility which increases with the span of the bridge. This makes stay cables vulnerable to local vibrations which may have significant effects on the dynamic responses of long-span CSBs. Hence, it is essential to account for these effects in the assessment of the dynamics CSBs. In this paper, the dynamic responses of CSBs under vehicular loads are studied using the finite element method (FEM), while the local vibration of stay cables is analyzed using the substructure method. A case study of a cable-stayed steel bridge with a center span of 448 m demonstrates that stay cables undergo large displacements in the primary mode of the whole bridge although, in general, a cable’s local vibrations are not obvious. The road surface roughness has significant effects on the interaction force between the deck and vehicle but little effect on the global response of the bridge. Load impact factors of the main girder and tower are small, and the impact factors of the tension of cables are larger than those of the displacements of girders and towers.  相似文献   

18.
A three-dimensional finite element model was established for a large span concrete filled steel tubular (CFST) arch bridge which is currently under construction. The arch rib, the spandrel columns, the prestressed concrete box-beam, the cast-in-situ concrete plate of bridge deck, the steel box-beam and the crossbeams connecting the two pieces of arch ribs, were modeled by three-dimensional Timoshenko beam elements (3DTBE). The suspenders were modeled by three-dimensional cable elements (3DCE). Both geometric nonlinearity and prestress effect could be included in each kind of element. At the same time a second finite element model with the same geometric and material properties excepted for the sectional dimension of arch rib was set up. Static dynamic analyses were performed to determine the corresponding characteristics of the structure. The results showed that the arch rib's axial rigidity could be determined by static analysis. The stability and vibration of this system could be separated into in-plane modes, out-of-plane modes and coupled modes. The in-plane stability and dynamic characteristics are determined by the arch rib's vertical stiffness and that of out-of-plane is determined by the crossbeams' stiffness and arch rib's lateral stiffness mainly. The in-plane stiffness is much greater than that of out-of-plane for this kind of bridge . The effect of geometric nonlinearity and prestress effect on bridge behavior is insignificant.  相似文献   

19.
A shelter system based on cable-strut structures,consisting of compressive struts and high-tensile elements,is described in this paper.The deployment of the shelter is achieved by tightening inclined cables.Lower cables are used to terminate the deployment.The state of self-stress of the cable-strut structures in the fully deployed configuration is given,and the minimum strut length and the maximum load design of the shelter are discussed.The mechanical behavior of the system was studied under symmetrical and asymmetrical load cases.The results show that the shelter in the deployed configuration satisfies the ultimate limit and the serviceability limit state conditions.Finally,the stability of the cable-strut system is investigated,considering the effect of imperfections on the buckling of the shelter.We conclude that the influence of imperfections based on the consistent imperfection mode method is not significant.  相似文献   

20.
边坡加固锚索预应力损失的探讨   总被引:7,自引:0,他引:7  
锚索预应力损失问题是关系到锚固工程安全与否的重要因素。通过对相关边坡工程的监测资料分析,探讨预应力锚索加固边坡的机理、锚索预应力损失的影响因素以及锚索预应力的变化规律,并在此基础上提出应力补偿的措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号