首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
<正>焦半径公式:已知F1,F2是椭圆x2/a2/a2+y2+y2/b2/b2=1(a>b>0)的左、右焦点,P(x_0,y_0)是椭圆上一点,则|PF_1|=a+ex_0,|PF_2|=a-ex_0。证明:椭圆的左准线方程为x=-a2=1(a>b>0)的左、右焦点,P(x_0,y_0)是椭圆上一点,则|PF_1|=a+ex_0,|PF_2|=a-ex_0。证明:椭圆的左准线方程为x=-a2/c。由椭圆的第二定义,得|PF_1|/(x_0+a2/c。由椭圆的第二定义,得|PF_1|/(x_0+a2/c)=c/a,即  相似文献   

2.
我们把连接圆锥曲线的焦点与曲线上任一点的连线段称为它们的焦半径,根据圆锥曲线的统一定义,很容易推导出圆锥曲线的焦半径公式.下面是用得较多的焦半径公式: (1)对于椭圆x2/a2 y2/b2=1(a>b>0)而言.|PF1|=a ex0,|PF2|=a-ex0. (2)对于双曲线x2/a2-y2/b2=1(a>0,b> 0)而言,|PF1|=ex0 a,|PF2|=ex0-a. (3)对于抛物线y2=2px(p>0)而言, |PF|=x0 p/2.  相似文献   

3.
椭圆x2/a2 y2/b2=1(a>b>0)中除长轴两端点外的任一点P(x1,y1)与两焦点F1(-c,0)、F2(c,0)所组成的三角形PF1 F2叫做焦点三角形 .焦半径|PF1|=a ex1,|PF2|=a-ex1.焦点三角形具有不少有益的结论,而对这些结论的证明亦颇有启迪性;并且这些结论在解题中也能起到不少帮助. 1.△PF1F2的周长为定值. 这个结论显而易见.由椭圆定义知|PF1| |PF2|=2a,而|F1F2|=2c,因此这个定值为2a 2c.  相似文献   

4.
本文探索了椭圆、双曲线焦半径与焦半径夹角的关系,得到如下两个结论. 定义圆锥曲线上一点与其焦点的连线段叫做焦半径. 定理1 P(x0,y0)是椭圆x2/a2 y2/b2=1(a>b>0)上一点,F1(-c,0),F2(c,0)是左右焦点,设|PF1|=r1,|PF2|=r2,∠F1PF2=θ,则 2b2/1 cosθ=r1r2,且tanθ/2=c|y0|/b2. 证:如图,在△F1PF2中有  相似文献   

5.
题目 (2014年湖北理数第9题)已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且∠F1PF2=π/3,则椭圆和双曲线的离心率的倒数之和的最大值为() A.4√3/3 B.2√3/3 C.3 D.2 解析:不妨设椭圆和双曲线的方程分别为x2/a212+t2/b12=1和x2/a22-y2/b22=1,其中:a1>b1>0,a2 >0,b2 >0,且椭圆和双曲线的离心率分别为e1和e2.记|PF1 |=m,| PF2 |=n,则由椭圆和双曲线的定义知:|m+n|=2a1①,| m-n |=2a2②.由①②得:m2+n2=2a2+ 2a2,mn=a12-a22③.在△F1 PF2中,应用余弦定理得:cos∠ F1PF2=m2+n2-(2c)2/2mn =1/2,即m2+ n2-4c2=mn.  相似文献   

6.
在高考数学中,圆锥曲线占有非常重要的位置,而熟练应用焦半径公式是解决圆锥曲线问题的一种简单快捷的方法.一、圆锥曲线的焦半径公式1.设 M(x_0,y_0)是椭圆x~2/a~2 y~2/b~2=1(a>b>0)上一点,F_1(-c,0)、F_2(c,0)是左、右焦点,e 是椭圆的离心率,则(1)|MF_1|=a ex_0,|MF_2|=a-ex_0.设 M(x_0,y_0)是椭圆 x~2/b~2 y~2/a~2=1(a>b>0)上一点,F_1(0,c)、F_2(0,-c)是上、下焦点,e 是椭圆的离心率,则(2)|MF_1|=  相似文献   

7.
连接圆锥曲线的焦点与曲线上任一点的线段统称为它的焦半径,根据圆锥曲线的统一定义,很容易推导出圆锥曲线的焦半径公式,下面是用处较多的椭圆、双曲线、抛物线的焦半径公式:1)对于椭圆ax22 by22=1(a>b>0)而言,焦半径公式为:|PF1|=a ex,|PF2|=a-ex.2)对于双曲线ax22-by22=1(a>0  相似文献   

8.
为了提高同学们的应试能力,特别是能够快捷地解答有关选择题和填空题的能力,本文归纳总结出圆锥曲线部分的实用小结论,以供参考.1椭圆1)椭圆的一般式方程:mx2 ny2=1(m>0,n>0,m≠n)2)椭圆的面积公式S=πab.3)点P(x0,y0)在椭圆xa22 by22=1(a>b>0)内部xa220 yb202<1;点P(x0,y0)在椭圆xa22 yb22=1外部ax202 yb202>1.图14)椭圆焦点弦及焦点三角形的性质:如图1,设椭圆C:xa22 by22=1(a>b>0),左焦点F1(-c,0),右焦点F2(c,0),P(x0,y0)是椭圆上的一点,则①焦半径公式:|PF1|=a ex0,|PF2|=a-ex0.②椭圆上不同3点A(x1,y1)、B(x2,y2)、C(x3,y3),则相…  相似文献   

9.
2007年全国高考天津卷理科第22题是这样的:设椭圆x2/a2+r2/b2(a>b>0)的左、右焦点分别为F1、F2,A是椭圆上的一点,AF2⊥F1F2,原点O到直线AF1的距离是3/1|OF1|。  相似文献   

10.
最近笔者对椭圆和双曲线作了些研究,得到了一个十分新颖有趣的性质,现说明如下. 定理1 设椭圆b2x2 a2y2=a2b2(a>b>0)的两条准线和x轴相交于E1和E2,点P在椭圆上,∠E1PE2=α,e是离心率,c为半焦距,则α为钝角,且当e2≥1/2((?)5-1)时有cotα≤-e,当且仅当|yp|=ab2/c2时等号成立.  相似文献   

11.
本文介绍椭圆与双曲线的一个有趣性质,并说明其应用. 性质 1 设P点是椭圆b2x2+a2y2+a2b2(a>b>0)上异于长轴端点的任一点,F1,F2为其焦点,记∠F1PF2=θ,则|PF1|·|PF2|=2b2/1+cosθ 简证:由椭圆定义有|PF1|+|PF2|=2a (1) 在△PF1F2中,由余弦定理有 |PF1|2+|PF2|2-2|PF1|·|PF2|·cosθ=4e2 (2) (1)2-(2)化简得 |PF1|·|PF2|= 2b2/1+cosθ 性质2 将性质1中的 b2x2+a2y2=a2b2改为b2x2-a2y2=a2b2(a>0,b> 0),其余不  相似文献   

12.
错在哪里     
1.湖北咸丰李永贵来稿题:过点B(0,-b)作椭圆x~2/a~2 y~2/b~2=1(a>b>0)的弦;求这些弦的最大值。解设M(x_0,y_0)为椭圆上任一点,由两点间的距离公式可得 |BM|~2=(x_0~2-0)~2 (y_0 b)~2=x_0~2 y_0~2 2by_0 b~2, ①因点M(x_0,y_0)在椭圆上,∴x_0~2=(a~2b~2-a~2y_0~2)/b~2,代入  相似文献   

13.
本文利用焦半径推导出经过圆锥益线焦点的直线被圆锥曲线截得的线段长度的一种表达形式。供教学参考.推论及证明推论经过椭圆b~2x~2 a~2y~2=a~2b~2(a>b>0),双曲线 b~2x~2-a~2y~2=a~2b~2(a>0,b>0),抛物线 y~2=2px(p>0)焦点 F 的直线与它们相交于 A、B 两点,若A、B 两点的横坐标为 x_1,x_2,则|AB|_(椭圆)=2a-e|x_1 x_2|(1)|AB|_(双曲线|=x_1 x_2|±2a(2)|AB|_(抛物线)=x_1 x_2 p(3)对于双曲线的说明:当 A、B 在同支上时取“-”,异  相似文献   

14.
题目:(湖北省部分重点中学2014届高三第一次联考理第20题)知椭圆C:x2/a2+y2/b2=1(a>b>0)的右焦点F,右顶点A,右准线x=4且|AF|=1. (1)求椭圆C的标准方程; (2)动直线l:y=kx+m与椭圆C有且只有一个交点P,且与右准线相交于点Q,试探究在平面直角坐标系内是否存在点M,使得以PQ为直径的圆恒过定点肘?若存在,求出点肘坐标;若不存在,说明理由.  相似文献   

15.
在1983年高考理科数学试题中,有如下一题: 如图(图一),已知椭圆长轴|A_1A_2|=6,焦距|F_2F_2|=42~(1/2),过焦点F_1作一直线,交椭圆于两点M、N,设∠F_2F_2N=a(0≤a<π),当a取什么值时,|MN|等于椭圆短轴的长。可以用多种方法来解答这道题,但其中以应用圆锥截线的统一的极坐标方程ρ=ep/(1-ecosθ)(e为离心率,p为焦点到相应准线的距离)来解较为简便(解法从略)。凡是过圆锥截线的  相似文献   

16.
本文介绍椭圆与双曲线的一个有趣性质,并说明其应用. 性质 1 设P点是椭圆b2x2+a2y2=a2b2(a>b>0)上异于长轴端点的任一点,F1、F2为其焦点,记∠F1PF2=θ,则|PF1|·|PF2|=2b2/1+cosθ 简证:由椭圆定义有|PF1|·|PF2|=2a (1) 在△PF1F2中,由余弦定理有|PF1|2+|PF2|2-2|PF1|·|PF2|cosθ=4c2 (2) (1)2-(2)化简得  相似文献   

17.
设 F_1、F_2 是椭圆x~2/a~2 y~2/b~2=1(a>b>0)的焦点,过 F_1、F_2的弦交椭圆于 P 点,称∠F_1PF_2为椭圆的弦焦角,如图。设∠F_1PF_2=2θ,则有下列结论.结论1|PF_1||PF_2|cos~2θ=b~2.证明:在△F_1PF_2中,由余弦定理|PF_1|~2 |PF_2|~2-  相似文献   

18.
问题 :已知椭圆 x22 5 +y216 =1的左右焦点分别是 F1 ,F2 ,点 M在椭圆上 ,且 M到两焦点的距离之积为 16 ,则 M的坐标为    .题目本身并不难 ,由椭圆定义知 |MF1 |+|MF2 |=2 a=10 ,又由条件知 |MF1 |·|MF2 |=16 ,于是 |MF1 |=2 ,|MF2 |=8或|MF1 |=8,|MF2 |=2 .又椭圆的焦点到长轴两个端点的距离恰为 2与 8,因此 M是长轴的两个端点之一 ,于是 M的坐标应是 (- 5 ,0 )或 (5 ,0 ) .一个疑问 :长轴的两个端点固然满足条件 ,但除了这两个端点以外还有没有其它满足条件的点呢 ?上述解法并没有给出确切的答案 ,因此严格地说上述解法是…  相似文献   

19.
《数学通报》88—2《高中数学复习探讨》一文P33例4: 已知椭圆方程x~2/4+y~2=1,过P(4,-2)作一直线l交椭圆于M、N两点,又Q点在直线l上,并且满足2/|PQ|=1/|PM|+1/|PN|。求Q点的轨迹方程。解:设过P点的直线方程为 {x =4+tcosθ y=-2+tsinθ(t为参数)代入椭圆方程得(cos~2θ+4sin~2θ)t~2+(8cosθ-16sinθ)t+28=0由2/|t|=1/t_1+1/t_2得Q点轨迹方程为:  相似文献   

20.
本文介绍椭圆离心率的一个有趣性质,并举例说明它在解题中的应用。 定理 椭圆x~2/a~2 y~2/b~2=1(a>b>0)的离心率为e,焦点为F_1、F_2,P为椭圆上一点,且∠PF_1F_2=o,∠PF_2F_1=夕,则 1-e/1 e=tgO/2tg厘/2 证明 由正弦定理与等比定理知: |PF_1|/sin丛=|PF_2|/sin竺=|F_1F_2|sin(止 二) |PF_1| |PF_2|/SinO Sin夕  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号