首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rearfoot external eversion moments due to ground reaction forces (GRF) during running have been suggested to contribute to overuse running injuries. This study aimed to identify primary factors inducing these rearfoot external eversion moments. Fourteen healthy men ran barefoot across a force plate embedded in the middle of 30-m runway with 3.30 ± 0.17 m · s–1. Total rearfoot external eversion/inversion moments (Mtot) were broken down into the component Mxy due to medio-lateral GRF (Fxy) and the component Mz due to vertical GRF (Fz). Ankle joint centre height and medio-lateral distance from the centre of pressure to the ankle joint centre (a_cop) were calculated as the moment arm of these moments. Mxy dominated Mtot just after heel contact, with the magnitude strongly dependent on Fxy, which was most likely caused by the medio-lateral foot velocity before heel contact. Mz then became the main generator of Mtot throughout the first half of the stance phase, during which a_cop was the critical factor influencing the magnitude. Medio-lateral foot velocity before heel contact and medio-lateral distance from the centre of pressure to the ankle joint centre throughout the first half of the stance phase were identified as primary factors inducing the rearfoot external eversion moment.  相似文献   

2.
BackgroundDuring human locomotion, a sufficiently stiff foot allows the ankle plantar flexors to generate large propulsive powers. Increasing foot stiffness (e.g., via a carbon plate) increases the ankle's external moment arm in relation to the internal moment arm (i.e., increasing gear ratio), reduces plantar flexor muscles’ shortening velocity, and enhances muscle force production. In contrast, when activation of the foot's intrinsic muscles is impaired, there is a reduction in foot and ankle work and metatarsophalangeal joint stiffness. We speculated that the reduced capacity to actively control metatarsophalangeal joint stiffness may impair the gearing function of the foot at the ankle.MethodsWe used a tibial nerve block to examine the direct effects of the intrinsic foot muscles on ankle joint kinetics, in vivo medial gastrocnemius’ musculotendinous dynamics, and ankle gear ratio on 14 participants during maximal vertical jumping.ResultsUnder the nerve block, the internal ankle plantar flexion moment decreased (p = 0.004) alongside a reduction in external moment arm length (p = 0.021) and ankle joint gear ratio (p = 0.049) when compared to the non-blocked condition. Although medial gastrocnemius muscle–tendon unit and fascicle velocity were not different between conditions, the Achilles tendon was shorter during propulsion in the nerve block condition (p < 0.001).ConclusionIn addition to their known role of regulating the energetic function of the foot, our data indicate that the intrinsic foot muscles also act to optimize ankle joint torque production and leverage during the propulsion phase of vertical jumping.  相似文献   

3.
The purposes of this study were to characterise the golfer–ground interactions during the swing and to identify meaningful associations between the golfer–ground interaction force/moment parameters and the maximum clubhead speed in 63 highly skilled male golfers (handicap ≤ 3). Golfers performed shots in 3 club conditions (driver, 5-iron and pitching wedge) which were captured by an optical motion capture system and 2 force plates. In addition to the ground reaction forces (GRFs), 3 different golfer–ground interaction moments (GRF moments, pivoting moments and foot contact moments) were computed. The GRF moment about the forward/backward (F/B) axis and the pivoting moment about the vertical axis were identified as the primary moments. Significant (p < 0.05) correlations of peak force parameters (all components in the lead foot and F/B component in the trail foot) and peak moment parameters (lead-foot GRF moment and trail-foot pivoting moment) to clubhead speed were found. The lead-foot was responsible for generating the GRF moment, while the trail foot contributed to the pivoting moment more. The instant the lead arm becomes parallel to the ground was identified as the point of maximum angular effort, and the loading onto the lead-foot near this point was critical in generating both peak moments.  相似文献   

4.
研究背景:现有研究文献尚无有关在着地过程中不同表面倾斜度和踝关节护具效应的运动学、动力学和地面反作用力的综合数据。通过对比25°斜面和平面的着地以及使用和不使用踝关节护具情况下来检测踝关节的生物力学特性。研究方法: 11名健康受试者[年龄:(24.6±3.5)岁,身高:(24.6±0.10)m,质量:(65.6±14.9)kg)参与本次研究。受试者在4个动态运动条件下各进行5五次实验:从0.45米高处垂直下落至25°的斜面(IS)或平面(FS)上,使用或不使用半刚性踝关节护具,同时采集三维运动学和测力台地面反作用力数据。利用2×2(表面X踝关节护具)的重复测量方差分析来评估选定的变量。研究结果:与平面着地相比,斜面着地造成较小的垂直和内侧地面反作用力峰值。研究还发现踝关节背曲运动范围、着地角度和背曲速度、最大外翻与跖曲角速度提高,但产生了更大内翻角度和运动范围、着地内翻速度和最大跖曲力矩。踝关节护具在斜面着地时减少了达到地面反作用力第二垂直峰值的时间、着地角度、背曲速度、最大外翻和跖曲速度,但增加了跖曲力矩的最大值。研究结论:斜面增加踝关节额状面的运动范围和踝关节负荷。但是,就斜面着地而言,踝关节护具对踝关节额状面的运动范围和踝关节负荷的影响是相当有限的。  相似文献   

5.
ABSTRACT

This study examined the effects of shoe collar-height and counter-stiffness on ground reaction force (GRF), ankle and knee mechanics in landing. Eighteen university basketball players performed drop landing when wearing shoes in different collar height (high vs. low) and counter-stiffness (stiffer vs. less stiff). Biomechanical variables were measured with force platform and motion capturing systems. Two-way repeated measures ANOVA was performed with α = 0.05. Wearing high collar shoes exhibited smaller peak ankle dorsiflexion and total sagittal RoM, peak knee extension moment, but larger peak knee varus moment than the low collar shoes. Stiffer counter-stiffness shoes related to smaller ankle inversion at touchdown and total coronal RoM, but larger peak knee flexion and increased total ankle and knee sagittal RoM than the less stiff counter-stiffness. Furthermore, wearing stiffer counter-stiffness shoes increased forefoot GRF peak at high collar condition, while no significant differences between counter-stiffness at low collar condition. These results suggest that although higher collar height and/or stiffness heel counter used can reduce ankle motion in coronal plane, it would increase the motion and loading at knee joint, which is susceptible to knee injuries. These findings could be insightful for training and footwear development in basketball.  相似文献   

6.
The purpose of this study was to investigate the interaction of foot strike and common speeds on sagittal plane ankle and knee joint kinetics in competitive rear foot strike (RFS) runners when running with a RFS pattern and an imposed forefoot strike (FFS) pattern. Sixteen competitive habitual male RFS runners ran at two different speeds (i.e. 8 and 6?min?mile?1) using their habitual RFS and an imposed FFS pattern. A repeated measures analysis of variance was used to assess a potential interaction between strike pattern and speed for selected ground reaction force (GRF) variables and, sagittal plane ankle and knee kinematic and kinetic variables. No foot strike and speed interaction was observed for any of the kinetic variables. Habitual RFS yielded a greater loading rate of the vertical GRF, peak ankle dorsiflexor moment, peak knee extensor moment, peak knee eccentric extensor power, peak dorsiflexion and sagittal plane knee range of motion compared to imposed FFS. Imposed FFS yielded greater maximum vertical GRF, peak ankle plantarflexor moment, peak ankle eccentric plantarflexor power and sagittal plane ankle ROM compared to habitual RFS. Consistent with previous literature, imposed FFS in habitual RFS reduces eccentric knee extensor and ankle dorsiflexor involvement but produce greater eccentric ankle plantarflexor action compared to RFS. These acute differences between strike patterns were independent of running speeds equivalent to typical easy and hard training runs in competitive male runners. Current findings along with previous literature suggest differences in lower extremity kinetics between habitual RFS and imposed FFS running are consistent among a variety of runner populations.  相似文献   

7.
目的:确定运动员在落地后即刻启动完成侧切变向(LSC)动作的下肢踝、膝和髋三关节矢状面的运动学和动力学特点,并与平地跑动侧切变向(SC)对比分析、探讨这些差异对下肢关节造成的影响。方法:以14名高水平足球运动员为背景的大学生完成落地侧切和平跑侧切动作时的下肢运动学和动力学数据进行采集与分析。结果:LSC动作的踝、膝关节ROM和关节角速度显著增加,髋关节ROM则呈相反趋势(P<0.05或P<0.01);LSC的踝、膝和髋关节力矩峰值,踝、髋关节功率峰值呈现显著大于SC(P<0.01),膝关节功率峰值小于SC(P<0.05);LSC在水平向后、垂直向上地反峰值及峰值加载率有明显的增加(P<0.01),水平向右地反无明显差异(P>0.05)。结论:LSC虽然略降低了膝关节功率峰值,但其余所有运动学、动力学及GRF都预示其下肢关节所承受的损伤风险更高,尤其是踝关节和膝关节。踝关节的高功率和跖屈肌的持续紧张、伸膝力矩和三维地反的显著升高,使得该动作比公认高损伤风险的平跑侧切损伤风险几率更大。  相似文献   

8.
ABSTRACT

Chronic foot and ankle injuries are common in dancers; understanding how lower extremity loading changes in response to altered task goals can be beneficial for rehabilitation and injury prevention strategies. The purpose of this study was to examine mechanical demands during jump take-offs when the task goal was modified to focus on either increasing jump distance or increasing jump height. It was hypothesized that a jump strategy focused on height would result in decreased energetic demands on the foot and ankle joints. Thirty healthy, experienced female dancers performed saut de chat leaps while travelling as far as possible (FAR) or jumping as high as possible (UP). Ground reaction force (GRF) impulses and peak sagittal plane net joint moments and sagittal plane mechanical energy expenditure (MEE) of the metatarsophalangeal (MTP), ankle, knee, and hip joints were calculated. During take-off, vertical and horizontal braking GRF impulses were greater and horizontal propulsive GRF impulse was lower in the UP condition. MEE at the MTP, ankle, and hip joints was lower in UP, and MEE at the knee was higher in UP. These results suggest that a strategy focused on height may be helpful in unloading the ankle and MTP joints during dance leaps.  相似文献   

9.
This study assessed kinematic differences between different foot strike patterns and their relationship with peak vertical instantaneous loading rate (VILR) of the ground reaction force (GRF). Fifty-two runners ran at 3.2 m · s?1 while we recorded GRF and lower limb kinematics and determined foot strike pattern: Typical or Atypical rearfoot strike (RFS), midfoot strike (MFS) of forefoot strike (FFS). Typical RFS had longer contact times and a lower leg stiffness than Atypical RFS and MFS. Typical RFS showed a dorsiflexed ankle (7.2 ± 3.5°) and positive foot angle (20.4 ± 4.8°) at initial contact while MFS showed a plantar flexed ankle (?10.4 ± 6.3°) and more horizontal foot (1.6 ± 3.1°). Atypical RFS showed a plantar flexed ankle (?3.1 ± 4.4°) and a small foot angle (7.0 ± 5.1°) at initial contact and had the highest VILR. For the RFS (Typical and Atypical RFS), foot angle at initial contact showed the highest correlation with VILR (r = ?0.68). The observed higher VILR in Atypical RFS could be related to both ankle and foot kinematics and global running style that indicate a limited use of known kinematic impact absorbing “strategies” such as initial ankle dorsiflexion in MFS or initial ankle plantar flexion in Typical RFS.  相似文献   

10.
短跑途中跑支撑阶段支撑腿关节肌肉生物力学特性的研究   总被引:5,自引:1,他引:4  
采用测力、测角加速度和多机多分辨拍摄技术对短跑途中跑支撑阶段肌肉动力学特征进行关节内力矩的计算与分析。研究表明,运动员踝关节跖屈肌的最大力矩与跑的速度呈显著相关;膝关节的伸肌在接近一半的支撑时间内是做离心收缩,离心收缩肌力矩的峰值要高于向心收缩的肌力矩峰值,离地前20%时刻膝关节屈肌起重要作用;髋关节在支撑阶段存在关节屈伸肌群交替工作,在着地后瞬间有较大的屈肌力矩,在离地前髋关节伸肌起重要作用,支撑阶段下肢关节肌肉快速退让性的离心收缩与主动收缩起同样重要的作用。  相似文献   

11.
This study determined the effects of simulated technique manipulations on early acceleration performance. A planar seven-segment angle-driven model was developed and quantitatively evaluated based on the agreement of its output to empirical data from an international-level male sprinter (100 m personal best = 10.28 s). The model was then applied to independently assess the effects of manipulating touchdown distance (horizontal distance between the foot and centre of mass) and range of ankle joint dorsiflexion during early stance on horizontal external power production during stance. The model matched the empirical data with a mean difference of 5.2%. When the foot was placed progressively further forward at touchdown, horizontal power production continually reduced. When the foot was placed further back, power production initially increased (a peak increase of 0.7% occurred at 0.02 m further back) but decreased as the foot continued to touchdown further back. When the range of dorsiflexion during early stance was reduced, exponential increases in performance were observed. Increasing negative touchdown distance directs the ground reaction force more horizontally; however, a limit to the associated performance benefit exists. Reducing dorsiflexion, which required achievable increases in the peak ankle plantar flexor moment, appears potentially beneficial for improving early acceleration performance.  相似文献   

12.
The objective of this study was to develop and evaluate a methodology for quantifying the contributions of modelling error terms, as well as individual joint torque, gravitational force and motion-dependent terms, to the generation of ground reaction force (GRF), whose true value can be measured with high accuracy using a force platform. Dynamic contributions to the GRF were derived from the combination of (1) the equations of motion for the individual segments, (2) the equations for constraint conditions arising from the connection of adjacent segments at joints, and (3) the equations for anatomical constraint axes at certain joints. The contribution of the error term was divided into four components caused by fluctuation of segment lengths, geometric variation in the constraint joint axes, and residual joint force and moment errors. The proposed methodology was applied to the running motion of thirteen rear-foot strikers at a constant speed of 3.3?m/s. Modelling errors arose primarily from fluctuations in support leg segment lengths and rapid movement of the virtual joint between the foot and ground during the first 20% of stance phase. The magnitudes of these error contributions to the vertical and anterior/posterior components of the GRF are presented alongside the non-error contributions, of which the joint torque term was the largest.  相似文献   

13.
Muscle power patterns in the mid-acceleration phase of sprinting   总被引:3,自引:2,他引:1  
To assess the role of the lower limb joints in generating velocity in the mid-acceleration phase of sprinting, muscle power patterns of the hip, knee and ankle were determined. Six male sprinters with a mean 100 m time of 10.75 s performed repeated maximal sprints along a 35 m indoor track. A complete stride across a force platform, positioned at approximately 14 m into the sprint, was video-recorded for analysis. Smoothed coordinate data were obtained from manual digitization of (50 Hz) video images and were then interpolated to match the sampling rate of the recorded ground reaction force (1000 Hz). The moment at each joint was then calculated using inverse dynamics and multiplied by the angular velocity to determine the muscle power. The results showed a proximal-to-distal timing in the generation of peak extensor power during stance at the hip, the knee and then the ankle, with the plantar flexors producing the greatest peak power. Apart from a moderate power generation peak towards toe-off, knee power was negligible despite a large extensor moment throughout stance. The role of the knee thus appears to be one of maintaining the centre of mass height and enabling the power generated at the hip to be transferred to the ankle.  相似文献   

14.
Measurement of ground reaction force (GRF) in running provides a direct indication of the loads to which the body is subjected at each foot-ground contact, and can provide an objective explanation for performance outcomes. Traditionally, the collection of three orthogonal component GRF data in running requires an athlete to complete a series of return loops along a laboratory based runway, within which a force platform is embedded, in order to collect data from a discrete footfall. The major disadvantages associated with this GRF data collection methodology include the inability to assess multiple consecutive foot contacts and the fact that measurements are typically confined to the laboratory. The objective of this research was to investigate the potential for wearable instrumentation to be employed, in conjunction with artificial neural network (ANN) and multiple linear regression (MLR) models, for the estimation of GRF in middle distance running. A modular wearable data acquisition system was developed to acquire in-shoe force (ISF) data. Matched data sets from wearable instrumentation (source data) and force plate (target data) records were collected from elite middle-distance runners under controlled laboratory conditions for the purposes of ANN and MLR model development (MD) and model validation (MV). In terms of statistical measures of prediction accuracy the MLR model was found to provide a superior level of accuracy for the prediction of the vertical and medio-lateral components of GRF and alternatively, the ANN model provided the most accurate predictions of the anterior-posterior component of GRF. The prediction accuracy of each component of GRF was found to be governed by the inherent signal variability, in which case the vertical and anterior-posterior components were more reliable and subsequently predicted significantly more accurately than the medio-lateral component. The emerging capability for obtaining continuous GRF records from wearable instrumentation has the potential to permit unprecedented quantification of training stress and competition demands in running.  相似文献   

15.
Abstract

Lateral ankle sprains (LAS) are one of the most common musculoskeletal injuries and as a response, clinicians often use external ankle taping prophylactically to reduce the prevalence of injuries. External ankle taping techniques have been shown to significantly reduce passive ankle range of motion; however, there is limited research on the effects of external ankle taping on lower extremity kinematics or kinetics during sport specific tasks. Therefore, our objective was to compare the effects of external ankle taping on ankle, knee and hip kinematics and kinetics compared to no taping during an anticipated sidestep cutting task and a straight sprint task. We conducted a cross-over laboratory study with 16 healthy males. Three-dimensional kinematics and kinetics were collected with a motion capture system and in-ground force plate during 5 trials of a sprint and anticipated side-step cut with or without external ankle taping. Group means and associated 90% confidence intervals were plotted across 100 data points for each task, significance being identified when the confidence intervals did not overlap for three consecutive data points. No significant kinetic or kinematic differences were identified between conditions for the tasks. External ankle taping does not influence lower extremity biomechanics during a control cutting task.  相似文献   

16.
BackgroundThis study presents a kinematic analysis of an acute lateral ankle sprain incurred during a televised badminton match. The kinematics of this injury were compared to those of 19 previously reported cases in the published literature.MethodsFour camera views of an acute lateral ankle sprain incurred during a televised badminton match were synchronized and rendered in 3-dimensional animation software. A badminton court with known dimensions was built in a virtual environment, and a skeletal model scaled to the injured athlete's height was used for skeletal matching. The ankle joint angle and angular velocity profiles of this acute injury were compared to the summarized findings from 19 previously reported cases in the published literature.ResultsAt foot strike, the ankle joint was 2° everted, 33° plantarflexed, and 18° internally rotated. Maximum inversion of 114° and internal rotation of 69° was achieved at 0.24 s and 0.20 s after foot strike, respectively. After the foot strike, the ankle joint moved from an initial position of plantarflexion to dorsiflexion—from 33° plantarflexion to 53° dorsiflexion (range = 86°). Maximum inversion, dorsiflexion, and internal rotation angular velocity were 1262°/s, 961°/s, and 677°/s, respectively, at 0.12 s after foot strike.ConclusionA forefoot landing posture with a plantarflexed and internally rotated ankle joint configuration could incite an acute lateral ankle sprain injury in badminton. Prevention of lateral ankle sprains in badminton should focus on the control and stability of the ankle joint angle during forefoot landings, especially when the athletes perform a combined lateral and backward step.  相似文献   

17.
The purpose of this study was to examine the effects of external load on vertical ground reaction force, and linear and angular kinematics, during squats. Eight males aged 22.1 +/- 0.8 years performed maximal concentric squats using loads ranging from 7 to 70% of one-repetition maximum on a force plate while linear barbell velocity and the angular kinematics of the hip, knee and ankle were recorded. Maximum, average and angle-specific values were recorded. The ground reaction force ranged from 1.67 +/- 0.20 to 3.21 +/- 0.29 times body weight and increased significantly as external load increased (P < 0.05). Bar linear velocity ranged from 0.54 +/- 0.11 to 2.50 +/- 0.50 m x s(-1) and decreased significantly with increasing external load (P < 0.05). Hip, knee and ankle angles at maximum ground reaction force were affected by external load (P < 0.05). The force-barbell velocity curves were fitted using linear models with coefficients (r2) ranging from 0.59 to 0.96. The results suggest that maximal force exertion during squat exercises is not achieved at the same position of the lower body as external load is increased. In contrast, joint velocity coordination does not change as load is increased. The force-velocity relationship was linear and independent from the set of data used for its determination.  相似文献   

18.
Abstract

The purpose of this study was to determine if angular displacement between the calcaneus and the midline of the lower leg while running is related to shin splints. A secondary purpose was to compare the strength and flexibility of ankle-joint plantar flexion, dorsal flexion, inversion, and eversion of shin-splint-injured and non-shin-splint-injured subjects. Two groups of conditioned female athletes were randomly selected to participate in this study. One group had a previous history of chronic shin splints, and the other group had no history of shin-splint injury. Angular displacement between the calcaneus and the midline of the lower leg was measured from motion picture film (100 frames/second) taken while the subjects were running at two speeds, 3m/second and 5m/second. A cable tensiometer was used to measure plantar flexion, dorsal flexion, and inversion and eversion strength at the ankle joint; and a goniometer was used to measure the flexibility of the plantar flexors, dorsiflexors, invertors, and evertors at the ankle joint. The results indicated that a shin-splint-injured leg had greater angular displacement between the calcaneus and the midline of the lower leg than a healthy leg, and that shoes and speed of running had an influence upon the amount of angular displacement. In addition, the muscular strength of the plantar flexor muscle was greater in the shin-splint subjects than in the non-shin-splint subjects.  相似文献   

19.
Abstract

This study assessed the reliability and validity of segment measured accelerations in comparison to front foot contact (FFC) ground reaction force (GRF) during the delivery stride for cricket pace bowlers. Eleven recreational bowlers completed a 30-delivery bowling spell. Trunk- and tibia-mounted inertial measurement units (IMUs) were used to measure accelerations, converted to force, for comparisons to force plate GRF discrete measures. These measures included peak force, impulse and the continuous force–time curve in the vertical and braking (horizontal) planes. Reliability and validity was determined by intra-class correlation coefficients (ICC), coefficient of variation (CV), Bland–Altman plots, paired sample t-tests, Pearson’s correlation and one-dimensional (1D) statistical parametrical mapping (SPM). All ICC (0.90–0.98) and CV (4.23–7.41%) were acceptable, except for tibia-mounted IMU braking peak force (CV = 12.44%) and impulse (CV = 18.17%) and trunk vertical impulse (CV = 17.93%). Bland–Altman plots revealed wide limits of agreement between discrete IMU force signatures and force plate GRF. The 1D SPM outlined numerous significant (p < 0.01) differences between trunk- and tibia-located IMU-derived measures and force plate GRF traces in vertical and braking (horizontal) planes. The trunk- and tibia-mounted IMUs appeared to not represent the GRF experienced during pace bowling FFC when compared to a gold-standard force plate.  相似文献   

20.
Side-step cutting manoeuvres comprise the coordination between planting and non-planting legs. Increased shoe collar height is expected to influence ankle biomechanics of both legs and possibly respective cutting performance. This study examined the shoe collar height effect on kinematics and kinetics of planting and non-planting legs during an unanticipated side-step cutting. Fifteen university basketball players performed maximum-effort side-step cutting to the left 45° direction or a straight ahead run in response to a random light signal. Seven successful cutting trials were collected for each condition. Athletic performance, ground reaction force, ankle kinematics and kinetics of both legs were analysed using paired t-tests. Results indicated that high-collar shoes resulted in less ankle inversion and external rotation during initial contact for the planting leg. The high-collar shoes also exhibited a smaller ankle range of motion in the sagittal and transverse planes for both legs, respectively. However, no collar effect was found for ankle moments and performance indicators including cutting performance time, ground contact time, propulsion ground reaction forces and impulses. These findings indicated that high-collar shoes altered ankle positioning and restricted ankle joint freedom movements in both legs, while no negative effect was found for athletic cutting performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号