首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
命题 设D、E分别是△ABC的边BC上与顶点B、C不重合的任意两点 ,△ABD、△ACE、△ABE、△ACD、△ADE的内切圆半径分别记作r1、r2 、r3、r4 、r5.则图 1r1r2=r3-r5r4 -r5.引理[1]  已知△ABC ,边BC上的高为h ,N为边BC上一点 ,△ABN与△ANC的内切圆半径分别为r1、r2 .则△ABC的内切圆半径r满足r=r1+r2 - 2r1r2h .命题证明 :如图 1 ,不妨设△ABC的内切圆半径为r,边BC上的高为h ,则由引理可得r=r1+r4 - 2r1r4 h ,①r=r2 +r3- 2r2 r3h ,②r3=r1+r5- 2r1r5h ,③r4 =r2 +r5- 2r2 r5h .④把④代入①、③代入② ,化简整理得2r1r4…  相似文献   

2.
一个有趣的平几公式   总被引:4,自引:1,他引:4  
本文先证明笔者最近发现的一个平几公式,即: 定理1 已知△ABC,BC边上的高为h,N为BC边内一点,△ABN与△ANC的内切圆半径分别为r_1、r_2,则△ABC的内切圆半径r满足 r=r_1 r_2-2r_1r_2/h_1 (1). 在证明定理1的时候需要用到一道已知的平几题,即 辅助命题 在△ABC中,内切圆⊙I与BC、CA、AB三边分别切于D、E、F,DIK为⊙I的直径,直线AK交BC边于C,则BG=CD.  相似文献   

3.
定理设△ABC的BC边上的高为ha,D为BC边上的任一内点,且△ABC,△ABD,△ACD的内切圆半径分别为r,r1,r2;对着∠BAC,∠BAD,∠CAD并与BC边相切的这些三角形的旁切圆半径依次是r',r1',r2'.则有  相似文献   

4.
一个有趣平几公式的三角证法   总被引:1,自引:1,他引:1  
《中学数学》(苏州)1996年第9期《一个有趣的平几公式》一文介绍了一个新发现的颇为有趣的平几公式,本文将巧用三角法提供一种别致的证明. 定理 已知△ABC,BC边上的高为h,N为BC边内一点,△ABN与△ANC的内切圆半径分别为r_1,r_2,则△ABC的内切圆半径r满足  相似文献   

5.
郑重声明     
命题 设ha为△ABC的边BC上的高,D为边BC上的任一点,且r,r1,r2分别是△ABC,△ABD,△ACD的半内切圆半径;设r',r1',r2'分别为对着∠BAC,∠BAD,∠CAD并分别与BC,BD,DC相切的三角形的旁切圆半径。  相似文献   

6.
文[1]给出了一个涉及垂足三角形内切圆半径的恒等式:设△DEF是锐角△ABC的垂足三角形,且BC=a,CA=b,AB=c,p=(a b c)/2,△ABC的面积、外接圆、内切圆半径分别为?、R、r,若△AEF、△BDF、△CDE的内切圆半径依次为rA、rB、rC,则cot cot cotA2B2C2r A r B rC=?r??R.(1)本文给出(1)式  相似文献   

7.
定理 设D、E是△ABC的边BC上任意两 (内 )点 ,ha 为BC边上的高 ,r ,r1,… ,r5依次为△ABC、△ABD、△AEC、△ADE、△ABE和△ADC的内切圆半径 ,则( 1 ) r1r2=r3-r4 r3-r5;( 2 )r =r1+r2 +r3-1ha·(r1r3+r1r5+r2 r3+r2 r4 ) .引理[1]  D为△ABC的BC边上任一内点 ,h为BC边上的高 ,r、r1、r2 分别为△ABC、△ABD、△ADC的内切圆半径 ,则r =r1+r2 -2r1r2h .定理的证明 :由引理得①r =r1+r5-2r1r5ha,及关于r、r2 、r4 ,r4 、r1、r3,r5、r2 、r3的类似式子②、③、④ ,进而将④代入① ,③代入② ,及① =② ,整理 ,消去ha,整理…  相似文献   

8.
文 [1 ]给出了如下平面几何公式 :r =r1+r2 -2r1r2h .其中 ,P为△ABC的BC边上一点 ,h为BC边上的高 ,r ,r1,r2 分别为△ABC、△ABP和△ACP内切圆半径 .我们得到定理 设P为△ABC的边BC上一点 ,h为BC上的高 ,R ,R1,R2 分别为△ABC、△ABP、△ACP的外接圆半径 ,CA =b ,AB =c ,则R =(b +c) (bR1+cR2 )4h(R1+R2 ) . ( )证明 :由正弦定理 ,AP =2R1sinB =2R2 sinC ,设BC =a而sinB =b2R,sinC =c2R,因此R1+R2 =AP2 ( 1sinB+1sinC) =R(b +c)bc ·AP=R(b+c) sinAah ·AP=R(b+c)· AP2Rh=b +c2h (R1sinB +R2 sinC)=b +…  相似文献   

9.
题目对于任意一个△ABC,记其面积为S,周长为l,P、Q、T依次为△ABC内切圆在边BC、CA、AB上的切点.证明:(第23届韩国数学奥林匹克)证明如图1.设△ABC的外接圆、内切圆半径分别为R、r.易知,BC=2Rsin A,TQ=AOsin A  相似文献   

10.
定理 设D为ΔABC的边BC上任一内点,且r、r1、r2分别为ΔABC、ΔABD、ΔACD内切圆的半径,r′、r1′、r2′分别为相应三角形ABC外旁切圆的半径,h为ΔABC的BC边上的高,则。  相似文献   

11.
<正>苏科版教材九年级上册《中心对称图形(二)》中有这样一道练习题:如图1,在Rt△ABC中,∠C=90°,AB、BC、CA的长分别为5、3、4.求△ABC的内切圆半径r.分析连结OA、OB、OC,将△ABC分成三个小三角形△ABO、△BCO和△ACO(如图2).这三个三角形都具有下列特征:即分别以△ABC的三边AB、BC、AC为底,其边上的高都为内切圆的半径r,则可用面积守恒来解决问题.  相似文献   

12.
定理 若△DEF是锐角△ABC的垂足三角形 ,且BC =a ,CA =b,AB =c,△AEF、△BDF、△CDE的内切圆分别为⊙I1、⊙I2 、⊙I3,其半径依次为r1、图 2r2 、r3,则有 ar1+br2+cr3≥ 1 2 3。证 ∵BE⊥AC ,CF⊥AB ,∴∠BEC =∠CFB =90°。又因E、F在BC的同侧 ,∴B、C、E、F四点共圆 ,∴∠AEF =∠B ,∠AFE=∠C ,故△AEF∽△ABC ,∴ EFBC=AEAB=r1r ,其中r为△ABC内切圆半径。在Rt△ABE中 ,cosA =AEAB,故 r1r =cosA ,即r1=rcosA ,同理r2 =rcosB ,r3=rcosC。  从而 ar1=arcosA =arsinA·tanA =2Rr ·tanA≥4tanA ,R…  相似文献   

13.
本文约定 △ABC的三内角及其所对的边长,内切圆半径,外接圆半径,半周长,面积分别记为A、B、C、a、b、c、r、R、s、△,△ABC的内部任一点到其三边BC、CA、AB的距离分别是r_1、r_2、r_3。  相似文献   

14.
文[1]给出如下一个定理: 定理若△DEF是锐角△ABC的垂足三角形,且BC=a,CA=b,AB=c,△AEF、△BDF、△CDE的内切圆分别是⊙I1、⊙I2、⊙I3,其半径分别是r1、r2、r3,则有a/r1 b/r2 c/r3≥12√3.  相似文献   

15.
命题 设从△ABC的外接圆中截去△ABC所剩三弓形的高分别为h_1,h_2,h_3,△ABC的内切圆半径为r,外接圆半径为R。则  相似文献   

16.
关于垂足三角形旁切圆半径之间有下面一个恒等式: 定理 若△ DEF 是锐角△ ABC 的垂足三角形,且 BC = a,CA = b,AB = c , p = (a b c) /2, △ ABC 的面积、外接圆半径、内切圆半径分别为? 、R 、r ,△ DEF 的旁切圆半径依次为rd 、re 、rf ,则有 rd = re =  相似文献   

17.
一道几何不等式猜想的证明   总被引:1,自引:0,他引:1  
刘保乾先生在1997年5月5日给笔者来信中提出了一个很好的关于几何不等式的猜想:在△ABC中,m_a、h_a分别为BC边上的中线和高线,R与r分别为△ABC的外接圆半径和内切圆半径,证明或否定  相似文献   

18.
一个几何命题的证明   总被引:1,自引:0,他引:1  
命题:二角形的外心至三边距离的和等于它的外接圆半径与内切圆半径之和。已知:O为△ABC的外接圆的圆心,OD、OE、OF为由O至BC、CA、BA的距离,R为它的外接圆半径、r为它的内切圆半径。求证:OD+OE+OF=R+r 本题见于几何辞典(日本,长泽龟之助著,薛德烱等译,新亚书店出版)第293页第1425题。原书的证明是这样的:命△ABC的面积为△,则R=abc/4△,r=△/s=△/(1/2)(a+b+c)  相似文献   

19.
定理 设△ABC内切⊙I(r)的三条切线DE//BC,FG//CA,HK//AB,BC=a,CA=6,AB=c,△ADE、△BGF、△CHK内切圆半径分别为ra、rb、rc,△ABC外接圆半径为R,半周长为s,面积为△,则如下八个等式成立:  相似文献   

20.
V.Ocordon曾给出了三角形的高与边长之间的不等式[1]:∑a2/h2b+h2c≥2 ① (关于△ABC三边及其边上的高的循环不等式,a、b、c为△ABC的三边,ha、hb、hc为对应边上的高,R、r分别为△ABC外接圆半径和内切圆半径)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号