首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
<正>高中数学中导数像是一枚宝贵的工具解决着许多数学问题。学习过程中常常利用导数来求曲线的切线方程,讨论函数的单调性,极值与求最值问题等。一、利用导数求曲线的切线方程因为函数y=f(x)在x=x_0处的导数表示曲线在点P(x_0,f(x_0))处切线的斜率,所以曲线y=f(x)在点P(x_0,f(x_0))处的切线方程可求得。若已知曲线过点P(x_0,f(x_0)),求曲线过点P的切线,则需分点P(x_0,f(x_0))是切  相似文献   

2.
设y=f(x)为可导函数。①在某个区间内,如果f(x)>0,则f(x)为增函数;如果f′(x)<0,则f(x)为减函数,反之亦然。②函数f(x)在某点取得极值的充要条件是该点的导数为零且该点两侧的导数异号。③函数f(x)在点x_0处的导数f′(x_0)是曲线y=f(x)在点(x_0,f(x_0))处切线的斜率。运用上述性质可解决下面几类问题。  相似文献   

3.
用导数法求函数的极值,是求极值基本方法,在解决这类问题时,如果对法则、定理一知半解或理解不透,很容易造成极值点的遗漏.可导函数y=f(x)在某一点x_0处取得极值的必要条件是这一点x_0的导数f′(x_0)=0.因此求可导函数y=f(x)的极值可以按照下列步骤进行: ①先求函数y=f(x)的导数f′(x); ②令f′(x)=0求得根x_0; ③在x_0附近左右两侧判断f′(x_0)的符号,左正右负为极大值点,左负右正为极小值点.  相似文献   

4.
导数这个解题工具进入高中教材以后,为高中数学注入了新的活力。利用导数不但能使某些问题的求解变得轻松、简便,而且为进一步学习高等数学奠定基础。下面举例说明导数在中学阶段的常见应用,供参考。一、求曲线的切线由导数的几何意义可知,函数y=f(x)在x=x_0处的导数即为曲线y=f(x)以P(x_0,f(x_0))为切点的切线的斜率。  相似文献   

5.
<正>导数是高考的必考知识点之一,其主要应用是求函数的单调性、极值和曲线的切线方程,本文主要讨论导数与切线方程。函数f(x)在点x_0处的导数f′(x_0)的几何意义是过曲线y=f(x)上点(x_0,f(x_0))的切线的斜率。函数在某点处的导数是函数相应曲线在该点处的切线的斜率。例1在平面直角坐标系xOy中,若曲线y=ax2+b/x(a,b为常数)过点P(2,-5),且该曲线在点P处的切线与直线7x+  相似文献   

6.
一、导数概念及其经济意义 导数的定义:设y=f(x)在x_0点的某领域内有定义,极限(若存在)表示函数y=f(x)在x_0点的导数,记为f(x_0)。 又由极限性质可知:(→0时)所以,即x·△x比△x是高阶无穷小,于是可以用f(x_0)△x近似代替△y, 记△y≈f(x_0)△x 当△x=l时,△y≈f(x_0) 意即f(x_0)近似地表示在x_0的基础上自变量改变一个单位时,△y的改变量。  相似文献   

7.
正一、定义本质1.导数的定义:f′(x_0)=limΔx→0Δy/Δx=limΔx→0f(x0+Δx)-f(x0)/Δx.2.导数的几何意义:f′(x_0)表示曲线y=f(x)在点(x_0,f(x_0))处的切线的斜率.从图形直观我们易得:导数其实上是函数曲线上两点连线斜率的极端情形;曲线的切线可看作是过切点的割线的极限位置;具备凹、凸性的函数曲线必位于其相应切线的上、下方.二、构建模型  相似文献   

8.
用二阶偏导数来判定函数f(x,y)在其驻点(x,y_0)处的极值,有时可能有判别式f_(xy)~2(x_0,y_0)-f_(xx)(X_0,y)·f_y(x,y_0)等于零的情况.这时,原来的判别法失效,从而需要作出进一步的考察.为此,本文特给出一种利用一般的高阶偏导数的判别方法.设函数f(x,y)在点(x,y_0)处可展开成n阶泰勒公式,并将其写成△f=P(h,k)+ε.式中P_n(h,k)=sum from m=1 to n(1/(m+1)!)(h((?)/(?)x)+(k(?)/(?)y))~(m 1)f(x,y_0);当ρ趋于零时ε趋于零.同时还设函数f(x,y)在点(x,y_0)处所有阶数不大于某个正整数N的偏导数都等于零,或在点(x,y_0)的某个邻域内所有阶数大于N+1的偏导数都恒等于零.那末,二元函数极值的高阶偏导数判别法可简单地归结为:若P_N(h,k)恒正或恒负,则f(x,y)在点(x_0,y_0)取得极值;若P_N(h,k)有正有负,则f(x,y)在点(x_0,y_0)处不取极值.  相似文献   

9.
能取等号吗?     
函数 y=f(x)在 x=x_0处有极值,则它的导数 f′(x)在这点的函数值为零,即 f′(x_0)=0,反过来,函数 y=f(x)的导数在某点的函数值为零时,这点却不一定是函数的极值点.因此,我们必须具体问题具体分析.例1 已知 b>-1,c>0,函数 f(x)=x b 的图象与函数 g(x)=x~2 bx c 的图像相切.(1)求 b 与 c 的关系(用 c 表示 b)(2)设函数 F(x)=f(x)g(x)在(-∞, ∞)内有极值点,求 c 的取值范围.分析:(1)(略);(2)函数 F(x)=f(x)·g(x)在(-∞, ∞)内有极值点,即存在 x_0使F′(x_0)=0,亦即一元二次方程 F′(x)=0有实  相似文献   

10.
题目 (2005年,辽宁,理科第22题)函数 y=f(x)在区间(0,+∞)内可导,导函数 f′(x)是减函数,且 f′(x)>0.设 x_0∈(0,+∞),y=kx+m 是曲线y=f(x)在点(x_0,f(x_0))处的切线的方程,并设函数g(x)=kx+m.(Ⅰ)用 x_0、f(x_0)、f′(x_0)表示m;(Ⅱ)证明:当 x_0∈(0,+∞)时,g(x)≥f(x);  相似文献   

11.
一般数学分析教材中(如[1]),都给出多元函数可微的充分性定理是:偏导数f′_x,,f′_y,f′_z不仅在点(x_0,y_0,z_0)处存在,并在它的某一邻域内也存在,此外,它们(作为x,y,z的函数)在这点连续,则函数u=f(x,y,z)在点(x_0,y_0,z_0)处可微。文[2]用另一种方法证明Henle的如下定理:如f:R~2→R的偏导数存在,且至少有一个偏导数连续,则f可微。文[2]并指出这定理在n≥3元时的相应命题一般不真。  相似文献   

12.
一、导数的几何意义 函数y=f(x)在点P(x0,y0)处的导数f'(x0)表示函数y—f(x)在x=x0处的瞬时变化率,导数f’(x0)的几何意义就是函数y=f(x)在P(x0,y0)处的切线的斜率,其切线方程为y—y0=f’(x0)(x—x0)。  相似文献   

13.
函数f(x)应用导数判断其单调性问题,这是我们常用的方法。但有一点是容易忽略的,这里提出来,引起大家注意。本文主要谈函数f(x)在一点x_0处附近的单调性与f(x)在点x_0处的单调性问题,这两个概念之间的区别及关系。  相似文献   

14.
一、原理若y=f(x)+g(x),仅当f(x),g(x)同时在某个x_0处取得最大(小)值,则在x_0处y取最大(小)值f(x_0)+g(x_0)。二、应用举例例1 求y=sin~2x+(2/(sin~2x)最值。解:y=(sin~2x+(1/(sin~2x)))+(1/(sin~2x)。设f(x)=sin~2x+(1/(sin~2x)≥2,g(x)=(1/(sin~2x)≥1。  相似文献   

15.
一、本文首先指出同济大学数学教研组编《高等数学》(第二版)中,关于多元函数极值充分条件证明有错误。这一错误在樊映川等《高等数学讲义》中也同样存在。在上述《高等数学》(下册)第72页,将函数z=f(x,y)在(x_0,y_0)处全增量写成:△f=f(x_0 h,y_0 k)-f(x_0,y_0) =1/2(Ah~2 2 Bhk Ck~2) 1/2(a_1h~2 2a_2hk a_3k~2)其中A=f_(xx)(x_0,y_0), B=f(xy)(x_0,y_0),C=f(yy)(x_0,y_0), θ_1=f_(xx)(x_0 θh,y_0 θk)-A θ_2=f_(xy),(x_0 θh,y_0 θk)-B θ_3=f(yy)(x_0 θh,θy_0 θk)-Ca_1,a_2,a_3均为当ρ=(h~2 k~2)~(1/2)→0时的无穷小量。该书编者提出以下的论断作为证明的出发点:“当P=Ah~2 2 Bhk Ck~2(?)0时,因为P是  相似文献   

16.
<正>笔者在高中数学课讲台上已耕耘十几年,对一种说法:"曲线y=f(x)在x=x_0处的切线"早已司空见惯,理解也准确唯一,那就是:"曲线y=f(x)在点(x_0,f(x_0)))处的切线",更确切的说就是"曲线y=f(x)上,以点(x_0,f(x_0)))为切点的切线".各位同仁对此也毫无异议,高度统一.因此,在教学中也潜移默化的把这一认识转嫁给学生.但笔者认为在这一转嫁过程中有一点必须交待清楚,那  相似文献   

17.
首先指出,当自变量x在点x_0处得到增量△x而变为x_0 △x时,函数u=g(x)的函数值就由u_0=g(x_0)变成u=g(x_0△x)。此时或有≠u_0,或有u≠u_0。记△u=u-u_0,则或有△u=0,或有△u≠0。记由增量△u引起的函数y=f(u)在u_0,处的增量为△y=f(u_n △u)-f(u_n)。由于u_n △u=u=g(x_n △x),u_n=g(x_n),得△y=[g(x_n △x)]-f[g(x_n)]。因此△y同时是函数y=f[g(x)]在x_0处由增量△x引起的函数y的增量。当增量△x使u=u_n时,有△y=0。  相似文献   

18.
<正>日前,笔者在高三导数复习课上,选择了某市的一道调研试题作为例题:已知函数f(x)=(1-a+ln x)/x,其中a∈R.(1)求f(x)的极值;(2)若1n x-kx<0在x∈(0,+∞)上恒成立,求实数k的取值范围;(3)已知x_1>0,x_2>0,且x_1+x_2x_1x_2.分析对于第(1)问,易得当x=e~a时,f(x)取极大值e~(-a).对于第(2)问,同学们异口  相似文献   

19.
<正>一、求极值利用可导函数求函数极值的基本方法:设函数y=f(x)在点x_0处连续且f'(x)=0。若在点x_0附近左侧f'(x)>0,右侧f'(x)<0,则f(x_0)为函数的极大值;若在点x_0附近左侧f'(x)<0,右侧f'(x)>0,则f(x_0)为函数的极小值。  相似文献   

20.
<正>函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点(x0,f(x0))处切线的斜率。由导数的几何意义求切线的斜率,即是求切点处所对应的导数。因此,求曲线在某点处的切线方程,可以先求出函数在该点的导数,即为曲线在该点的切线的斜率,再用直线方程的点斜式写出切线方程,其步骤为:(1)求出函数y=f(x)在点x0处的导数f′(x0);(2)根据直线方程的点斜式,得切线方程  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号