首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
从抛物线y~2=2px外一点p(x_0,y_0)、向抛物线引两条切线,切点为A,B,则线段AB称为p点的切点弦、切点弦AB的方程是yy_0=p(x+x_0),证明如下: 设切点A、B坐标分别为A(x_1,y_1),B(x_2,y_2),则PA、PB方程分别为:  相似文献   

2.
定理过点(k,0)作直线AB和抛物线y2=2px(p>0)交于A(x1,y1)、B(x2,y2)两点,则有x1x2=k2,y1y2=-2pk.证明设直线AB的方程为x=my+k,代入y2=2px,有y2-2pmy-2pk=0.因为直线AB与抛物线相交于A(x1,y1)、B(x2,y2)两点,于是y1y2=-2pk.由y21y22=4p2x1x2,得到x1x2=y21y224p2=4p2k24p2=k2.推论(焦点弦定理)若AB是过抛物线y2=2px(p>0)的焦点的弦,且A(x1,y1),B(x2,y2),则有y1y2=-p2,x1x2=p24.在解决某些与抛物线相关问题的时候,应用该定理和推论的内容,能简洁、快速地解题,同时也能达到优化解题过程的目的.例1如图1所示,线段AB过x轴正半轴上一点M(m,0…  相似文献   

3.
本文探讨抛物线对顶点张直角的弦的几个性质及应用.设点A,B在抛物线y2=2px或x2=2py(p>0)上,且OA⊥OB(O为坐标原点).1、对抛物线y2=2px,弦AB过定点(2p,0),反之也成立;对抛物线y2=2px弦AB过定点(0,2p),反之也成立.2、若直线OA的斜率为k(k≠0),则:(1)对抛物线y2=2px,弦AB的中点为(p(k2 1/k2),p(?k 1/k));对抛物线x2=2py,弦AB的中点为(p(k?1/k),p(k2 1/k2)).(2)弦AB的长l=2p(k2 k12 12)2?94;(3)△AOB面积2S2p2k1k= .下面只对y2=2px的情形加以证明,对x2=2py的情形类似可证.证明由???yy2==k2x,px,得A(2k p2,2kp).由OA⊥OB可得B(2pk2,?…  相似文献   

4.
抛物线的焦点弦有着很多值得思考的性质,这里略举一二.图1(一)过抛物线y2=2px的焦点F的一条直线和此抛物线交于两点A、B,如图1,其中A(x1,y1),B(x2,y2),则弦长|AB|=x1 x2 p.这由抛物线的定义很容易得到.(二)过抛物线y2=2px的焦点F的一条直线和此抛物线交于两点A、B,如图1,其中A(x1,y1),B(x2,y2),则y1·y2=-p2.证明:抛物线y2=2px与直线AB:x=ky 2p,联立得y2-2kpy-p2=0,所以由韦达定理得y1·y2=-p2.(三)过抛物线y2=2px的焦点F的一条直线和此抛物线交于两点A、B,令|AF|=r1,|BF|=r2,则r11 r12=2p.设抛物线的焦点F2p,0,当直线的斜率不存在…  相似文献   

5.
2004 年福建省高考理工 22 题,文史 21 题均涉及到如下命题: P 是抛物线C : y = x2 /2上一点,直线l 过点 P 且与抛物线C 交于另一点Q ,若直线l 与过点 P 的切线垂直,求线段PQ 中点 M 的轨迹方程. 上述命题中,线段 PQ为过切点且与切线垂直的弦,点 M 为线段 PQ 的中点.这是一道求受限动弦中点轨迹的问题,本文探究此类轨迹方程的一般形式,并予以推广. 定理 1 抛物线 x2 = 2py的弦 PQ垂直于过点 P 的切线,则 PQ中点M 的轨迹方程为 y = x2 / p p3 /(2x2) p . 证明 设 P(x1, y1),Q(x2, y2) ,M(x, y) ,由 y = x2 得 y'=…  相似文献   

6.
文 [1 ]、[2 ]分别探讨了直线方程 x0 xa2 +y0 yb2 =1和直线方程 x0 xa2 -y0 yb2 =1的几何意义。两篇论文给出的结论对于研究椭圆和双曲线具有非常重要的意义。其实对于抛物线、圆也有类似的结论 ,作为对两篇论文的补充现给出抛物线与之相关的定理。定理 1 已知P0 (x0 ,y0 )是抛物线 y2 =2 px上的任意一点 ,则直线 y0 y =p(x0 +x)表示此抛物线上以P0 (x0 ,y0 )为切点的切线。证明 当 y0 >0时 ,抛物线的方程可以写成 y =± 2 px,则 y′=± p2 px,所以P0 (x0 ,y0 )为切点的切线的斜率为± p2px0,切线的方程为 y-y0 =± p2 px0(x -x0 ) ,即…  相似文献   

7.
由抛物线的定义可以推出,过抛物线y2=2px(p>0)焦点(P/2,0)弦AB的弦长与弦AB中点的横坐标有着密切的关系:|AB|=x1 x2 p=2x p,其中A点的坐标为(x1,y1),B点的坐标为(x2,y2),x=x1 x2/2.……  相似文献   

8.
由抛物线的定义可以推出,过抛物线y2=2px(p>0)焦点(P/2,0)弦AB的弦长与弦AB中点的横坐标有着密切的关系:|AB|=x1+x2+p=2x+p,其中A点的坐标为(x1,y1),B点的坐标为(x2,y2),x=x1+x2/2.  相似文献   

9.
1 2004年北京市春季高考试题的推广 2004年北京市春季高考试题有一道试题: 过抛物线y2=2px(p>0)上一点P(x0,y0)(y0≠0),作两条直线分别交抛物线于A(x1,y1),B(x2,y2),求证:当PA,PB的斜率存在且倾斜角互补时,直线AB的斜率是非零常数.  相似文献   

10.
抛物线的焦点弦是抛物线定义与性质的交汇点.本文就与其相关的切线探索出若干性质.题目抛物线y2=2px(p>0)上不同两点A、B处的切线交于点Q.求证:若AB过抛物线的焦点F,则(1)AQ⊥BQ;(2)点Q在抛物线的准线上;(3)QF⊥AB.证明设A(x1,y1),B(x2,y2),Q(x0,y0).对于y2=2px求导,有2yy’=2p,得  相似文献   

11.
过抛物线外一点可向抛物线作二切线,经研究发现,这二切线有如下一个优美性质. 定理 点Q为抛物线y2=2px(p>0)外一点,过点Q向抛物线作二切线QA,QB,(其中A,B为切点),F为抛物线的焦点,则∠BQF=∠QAF.(如图1)  相似文献   

12.
结论 从圆O外一点P引圆的两条切线 PA、PB,切点分别为A、B,则切点弦AB被直线 OP垂直平分. 此结论可推广到椭圆、双曲线和抛物线. 1.从不在椭圆(x2)/(a2) (y2)/(b2)=1(a>b>0)对称轴 上的任意一点P引椭圆的两条切线PA、PB,切 点分别为A、B,则切点弦AB被直线OP平分,且 直线AB和OP的斜率之积为定值-(b2)/(a2).  相似文献   

13.
正问题:如图1,已知圆C:x2+y2=r2与直线l:y=kx+m没有公共点,设点P为直线l上的动点,过点P作圆C的两条切线,A、B为切点。证明:直线lAB恒定过点Q。分析:利用我们常用的一个结论:若点P(x0,y0)是圆x2+y2=r2外一点,则过点P作圆的两条切线,切点分别为A、B,则过A、B两点的直线方程为:x0·x+y0·y=r2。  相似文献   

14.
1 x0x y0y=R2的几何意义 我们知道,若P(x0y0)在圆x2 y2=R2上则x0x y0y=R2是过P(x0y0)点的圆的切线;若P(x0,y0)在圆外,过P点作圆的切线PA,PB,其中A,B是切点,则x0x y0y=R2是直线AB的方程;若P(x0,y0)在圆内,直线x0x y0y=R2与圆x2 y2=R2外离,其几何意义是什么?笔者在研究这个问题时,发现其几何意义是:过P(x0,y0)任作一弦AB,过A,B分别作圆的切线l1、l2,l1、l2交点的轨迹是直线x0x y0y=R2.  相似文献   

15.
<正>过圆x2+y2=r2上一点P0(x0,y0)作该圆的切线,只有一条,易知其方程为x0x+y0y=r2.当点P0(x0,y0)在圆x2+y2=r2外时,切线有两条,设切点分别为A、B,那么如何求直线AB的方程呢?本文借助一道高考题展开.例1(2013年山东高考题)过点(3,1)作圆(x-1)2+y2=1的两条切线,切点分别为A、B,则直线AB的方程为().(A)2x+y-3=0(B)2x-y-3=0(C)4x-y-3=0(D)4x+y-3=0  相似文献   

16.
本文将对以下两个与抛物线有关的命题进行探究.命题1在抛物线y2=2px(p>0)中,过顶点O作两直线交抛物线于A、B两点,若(OA|→). (DB|→)=0,则直线AB过x轴上一定点(2p,0).命题2在抛物线y2=2px(p>0)中,过焦点F(p/2,0)作不过顶点O的一条直线交抛物线  相似文献   

17.
<正>特性L:过圆上一点P作两条互相垂直的弦,则连接两弦的另一端点的弦经过定点(圆心)。探索一、那么在相同条件下,对于抛物线是否有特性L呢?问题1.过抛物线y2=2px(p>0)顶点作互相垂直的弦OA、OB交抛物线于A、B,如图1,求证:直线AB过定点M(2p,0).  相似文献   

18.
1.对抛物线y2=2px(p>0),AB为过其焦点的弦,A(x1,Y1),B(x2,y2),则有:|AB|=x1+x3+p. 证明:抛物线的焦点为F(p/2,0),准线方程是l:x=-p/2.过A、B分别作AA'、BB'垂直于l,垂足为A'、B'.由定义可知  相似文献   

19.
设直线l经过抛物线C:y2=2px(p>0)的焦点F,且与抛物线C交于A、B两点(直线AB的倾斜角为α),设A (x1,y1),B(x2,y2),O为坐标原点,准线方程为:x=-p/2,则关于抛物线C的焦点弦有以下九条常用的性质:(1)2x1x2=p/4;(2)y1y2=-p2.  相似文献   

20.
先证抛物线切线的一个性质: 定理已知抛物线y=ax2外任意一点A(x0,y0),抛物线上到点A的距离最小的点为B(x1,y1),则直线AB与抛物线上点B的切线互相垂直.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号