首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
一、从特殊中确定解题方向例1 已知:P 是正△ABC 内任意一点,PE、PF、PG 是它与三边的距离,求证:PE+PF+PG 是定值.首先必须弄清楚这个定值是什么?由于 P 是三角形内任一点,不妨退到一种特殊位置,如 P 与 A 重合,则 A 到三边距离  相似文献   

2.
定理 P是△ABC形内任一点,AP、BP、CP的延长线分别与其对边交于D、E、F,则PD/AD PE/BE PF/CF=1 证 如图1,设△PAB、△PBC、△PAC和△ABC的面积依次为S_1、S_2、S_3和S,则,S_1 S_2 BS_3=S,又PD/AD=  相似文献   

3.
在对这道题的探究性学习中 ,可看到猜想的作用 ,了解极端化的方法 ,知道“退”的原则 ,体会转化的思想方法 ,学习面积证法 ,熟悉一题多变的基本方法 ,加深对统一观点的认识 ,感受对命题的推广 .命题 正△ABC内任意一点P到三边距离之和PD PE PF为定值 .(如图 1)1 未证先猜 ,着眼极端情形先估猜一下定值 .由于点P是△ABC内任意一点 ,不妨让点P运动到顶点A的位置 ,此时PD =PF =0 ,PE成为BC边上的高 ,得PD PE PF =h .这种在极端位置估算定值的方法 ,几何上一般叫极端化 (或特殊化 )的方法 .G·波利亚在《数学与猜想》中说 :“…  相似文献   

4.
276.设P是正△ABC内一点,分别作P关于直线AB、BC、CA的对称点C_1、A_1、B_1,并设△ABC、△A_1B_1C_1的面积分别为S、S′,试证:S′≤S。证:如图1,设正△ABC的边长为x,P到三边BC、CA、AB的距离分别为a、b、c,△PB_1C_1、△PC_1A_1、△PA_1B_1的面积分别为S_1、S_2、S_3,那么S′=S_1+S_2+S_3,且因∠A_1PB_1=∠B_1PC_1=∠C_1PA_1=120°,所以 S_1=1/2·2b·2c·sin120°=3~(1/2)bc, S_2=3~(1/2)ca,S_3=3~(1/2)ab。因正三角形内任一点到三边的距离之和等于此正三角形的高,即a+b+c=3~(1/2)/2x,于是S′=3~(1/2)(bc+ca+ab)≤3~(1/2)·1/3(a+b+c)~2=3~(1/2)/3·(3~(1/2)/2x)~2=3~(1/2)/4x~2=S。  相似文献   

5.
<正>1 问题导引(1)已知锐角△ABC,请你用尺规作图的方法确定一点P,使得PA+PB+PC最短.即:确定一点使得该点到三角形的三个顶点的距离之和最短.满足上述条件的点P,我们称之为三角形的费马点.(2)该点的寻找步骤:①以BC为边构造一个△BCQ,使得BC∶CQ∶BQ=1∶1∶1(即△BCQ是等边三角形);②作△BCQ的外接圆;③连接QA,AQ与△BCQ外接圆有一个交点P;④由于△ABC是锐角三角形,所以该点就是符合条  相似文献   

6.
定理 设P是△ABC所在平面上一点,AP,BP,CP分别与对边BC,CA,AB所在的直线交于D,E,F,则AP/PD=AE/EC AF/FB. 证明 如图1,因为△APC和△BPC有公共边CP,故S_(△APC)/S_(△BPC)=AF/FB,同理S_(△APB)/S_(△BPC)=AE/EC。 图1 ∴AE/EC AF/FB=S_(△APC)/S_(△BPC) S_(△ABC)/S_(△BPC)=(S_(△ABC)-S_(△BPC))/S_(△BPC)=(S_(△ABC)/S_(△BPC)-1)=AD/PD-1=AP/PD。 即AP/PD=AE/EC AF/FB。  相似文献   

7.
小马做几何     
有人说,数学的殿堂庄严神圣.你不把它当回事,它也会不把你当回事.一次,老师给小马做了以下几道几何题:第1道,△ABC的边BC上的高AD为5cm,又BD=2cm,DC=4cm,求△ABC的面积.小马画出了左图后答:S△ABC=12AD·BC=21AD(BD+DC)=21·5(2+4)=15(cm2).第2道,请设计一种方案求出△ABC三内角之和.小马在△ABC的边BC上取了一点D(如图),连接AD,于是他写道:设三角形的三内角之和为x,则∠1+∠3+∠B=x,∠2+∠4+∠C=x.那么∠1+∠2+∠3+∠4+∠B+∠C=2x.即x+(∠3+∠4)=2x.x+180°=2x`,x=180°.第3道,BE、CF分别是△ABC的高,已知∠A=α,BC=…  相似文献   

8.
定理梯形的两条对角线和两腰所在的两个三角形的面积相等,且这个面积是梯形两条对角线与两底所在的两个三角形面积的比例中项。证明:如图1,梯形ABCD中,AD∥BC,记∠AOB=a,△AOD、△BOC的两面积分别为 S_1、S_2,内三角形面积公式可知:S_(△ABC)=S_(△DBC), ∴ S_(△ABC)-S_(△BOC)=S_(△DBC)-S_(△BOC), ∴ S_(△AOB)=S_(△DOC)。又S_1·S_2=1/2OA·ODsina·1/2OB·OCsina =1/2OA·OBsina·1/2OD·OCsina =S_(△AOB)~2。应用上面的定理,解决一类作图题和与梯形面积有关的竞赛题。  相似文献   

9.
在平面几何的不等式领域,有如下著名的Erdos-Mordell不等式成立。设P为△ABC内一点,P到三边距离分别为PD,PE,PF,则 PA+PB+PC≥2(PD+PE+PF).(1) 在此,笔者将(1)及其相关命题从平面(二维)三角形向空间(三维)四面体中推广,推广的方法是类比,由此可体会出从平面到空间的过渡中数学内在的结构美。定理一在四面体ABCD内有一点P、P到平面△BCD,△ACD,△ABD,△BAC的垂线  相似文献   

10.
在学习等腰三角形时,我们曾经遇到过这样一个几何命题:等腰三角形底边上任意一点到两腰的距离之和等于一腰上的高.如图1,已知在△ABC中,AB=AC,P是BC上任一点,PD⊥AB于D,PE⊥AC于E,CF⊥AB于F.求证:CF=PD+PE.对于该题,一般学生会想到截长法与补短法.  相似文献   

11.
《立体几何》甲种本p52.题18(2)如下: [题] 平面ABC外一点P到△ABC三边的距离相等,O是△ABC的内心.求征:OP⊥平面ABC. 该题通常是这样证明的(简述);由P到△ABC三边的距离相等:PD=PE=PF,根据三垂线定理  相似文献   

12.
等腰三角形底边上任意一点到两腰距离的和等于腰上的高.已知:如图1,在△ABC中,AB=AC,P是BC上任一点,PE⊥AB,PD⊥AC,CF⊥AB,E、D、F分别为垂足. 求证:CF=PE+PD.  相似文献   

13.
本刊93年第5期“抛物线与三角形面积”一文,给出了下面的两个结论:设抛物线y=ax~2+bx+c(a≠0)当△=b~2-4ac>0时,抛物线与x轴的两交点为A、B,顶点为C,与y轴的交点为D,则本文拟对结论(2)作两点补充: ①若△ABC为等边三角形,则△=b~2-4ac=12,S_(△ABC)=3 3~(1/2)/a~2. ②若△ABC为等腰直角三角形,则△=b~2-4ac=4,S_(△ABC)=1/a~2. 由于△ABC的底边AB=△/|a|,高为|△/4a|;当△ABC为等边三角形时,高为底边的3~(1/2)/2倍;当△ABC为等腰直角三角形时,高为底边的一半,利用这两点,不难证明以上两个结  相似文献   

14.
本文将给出著名的Erd(?)s—Mordell不等式一个加强不等式。 Erd(?)s—Mordell不等式是指: P为△ABC内部或边上一点,P到三边距离为PD、PE、PF,则 PA+PB+PC≥2(PD+PE+PF)。 (1) 关于此不等式,详见上海教育出版社1980年2月出版的《几何不等式》一书。(P.57 例4) Erd(?)s—Mordell不等式的加强式是: P为△ABC内部或边上一点,PD′、PE′、PF′,分别为∠BPC、∠APC、∠BPA的平分线(见图1),则  相似文献   

15.
例 1 .求证等腰三角形底边上任意一点与两腰的距离和等于腰上的高。已知 :△ ABC中 ,AB=AC,P为 BC上任意一点 ,PE⊥ AB,PF⊥ AC,CD⊥ AB。如图 1。求证 :PE PF=CD。证明 :过 P点作 PM⊥ CD,∵ PE⊥ AB,CD⊥ AB,∴四边形 PMDE是矩形 ,∴PE=DM。∵PM⊥ CD,CD⊥AB,∴AB∥PM,∴∠ B=∠ MPC。∵AB=AC,∴∠ B=∠ ACB,∴∠ MPC=∠ ACB。在△ MPC和△ FCP中 , ∠ PMC=∠ CFP, ∠ MPC=∠ ACB,  PC=CP,∴△ MPC≌△ FCP,∴PF=CM,∴CD=DM CM=PE PF。反思 1 .此题条件等腰三角形可变为等边三角形。…  相似文献   

16.
文 [1 ]给出了如下平面几何公式 :r =r1+r2 -2r1r2h .其中 ,P为△ABC的BC边上一点 ,h为BC边上的高 ,r ,r1,r2 分别为△ABC、△ABP和△ACP内切圆半径 .我们得到定理 设P为△ABC的边BC上一点 ,h为BC上的高 ,R ,R1,R2 分别为△ABC、△ABP、△ACP的外接圆半径 ,CA =b ,AB =c ,则R =(b +c) (bR1+cR2 )4h(R1+R2 ) . ( )证明 :由正弦定理 ,AP =2R1sinB =2R2 sinC ,设BC =a而sinB =b2R,sinC =c2R,因此R1+R2 =AP2 ( 1sinB+1sinC) =R(b +c)bc ·AP=R(b+c) sinAah ·AP=R(b+c)· AP2Rh=b +c2h (R1sinB +R2 sinC)=b +…  相似文献   

17.
结论如图1,已知D为△ABC边BC上的任一点,O为AD上一点,连结BO、CO.设△BOD、△DOC、△AOC、△AOB的面积分别为S_1、S_2、S_3、S_4.则S_1·S_3=S_2·S_4. 证分别过B、C两点作AD所在直线的垂线BE、CF,垂足为E、F,则有(BD)/(CD)=(BE)/)CF).  相似文献   

18.
本文给出两个关于三角形边的命题 .命题 1 到三边不等的三角形三边距离之和最小的点是此三角形最大边所对顶点 .命题 2 到三角形三边距离的平方和最小的点是此三角形重心的等角共轭点 .注 :△ABC内两点D、E互为等角共轭点的充分必要条件是 ,∠DAB =∠EAC ,∠DBC=∠EBA ,∠DCA =∠ECB .先证明命题 1 .证明 :设△ABC内一点P到三边BC、AC、AB的距离分别为x、y、z,并设BC =a ,AC =b ,AB =c ,S△ABC=S .则有ax by cz=2S .①不妨设a >b >c,则2S =ax by cz≤ax ay az=a(x y z) .所以 ,x y z≥2Sa .上式等号成立的条…  相似文献   

19.
在数学教学中,引导学生去研究和发现新问题,是培养学生分析问题和解决问题的能力不可缺少的方面。现在就命题条件的改变与引伸的研究谈几个例子。例一、等腰三角形底边上任意一点到两腰的距离之和等于腰上的高。如下图,在△ABC中,AB=AC,P是BC边上任一点,PD⊥AB,PE⊥AC,CF⊥AB。求证:PD PE=CF。这个问题的证明一般可以通过△ABC的面积=△APB的面积 △APC的面积  相似文献   

20.
设 P是△ ABC内部任意一点 ,P至边BC,CA,AB的距离分别为 r1 ,r2 ,r3 ,令 PA= R1 ,PB=R2 ,PC=R3 ,涉及三角形内部任意一点的不等式是一类十分有趣的几何不等式 ,最著名的是 Erdos- Mordell不等式R1 +R2 +R3 ≥ 2 (r1 +r2 +r3 ) . (1)本文将证明关于 (R1 ,R2 ,R3 )及 (r1 ,r2 ,r3 )与△ ABC半周长 s的一个线性不等式 .首先给出一个优美简洁的引理 .引理 设 P是△ ABC内部任意一点 ,则(R1 +R2 +R3 ) 2≥s2 +(r1 +r2 +r3 ) 2 . (2 )当且仅当△ ABC为正三角形且 P为中心时(2 )式取等号 .证明 令 BC=a,CA=b,AB=c,ha 为BC边…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号