首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To provide insight into the strengths and limitations of using groupwork to promote excellence and equity in science education, the researcher investigated how students using the Complex Instruction model of groupwork constructed scientific knowledge. Eighty sixth-grade students and one life science teacher at an urban middle school participated in this study. Qualitative analysis of videotapes and interviews makes clear that group discussions rarely moved beyond observational or procedural matters, that students of high status (perceived academic ability and popularity) had greater access to their groups' materials and discourse, and that students made few connections among the contexts of school, science, and everyday life. Quantitative analyses of participation during groupwork and performance on unit tests show that high-status students had significantly higher rates of on-task talk than their middle- or low-status counterparts, and that those students who talked more learned more as well. Thus, although groupwork should not be summarily dismissed as an instructional strategy, group tasks and implementation must be further refined to adequately address the dual goals of excellence and equity: Students need greater guidance in how to talk and do science, and teachers, greater assistance in eliminating differences in student participation and achievement. © 1997 John Wiley & Sons, Inc. J Res Sci Teach 34: 1039–1065, 1997.  相似文献   

2.
Large‐scale observational measures of classroom practice increasingly focus on opportunities for student participation as an indicator of instructional quality. Each observational measure necessitates making design and coding choices on how to best measure student participation. This study investigated variations of coding approaches that may be feasible in large‐scale studies, and the ramifications of these variations for drawing inferences about instructional quality. Using data from classroom videos, we found that decisions about whether to keep track of individual students in the coding, observe multiple contexts in the classroom (e.g., whole‐class and small‐group discussions), and capture nuances of student participation changed the resulting characterizations of classroom practice. Most importantly, simplifying the coding approach did not fully capture and even misrepresented the level and nature of student participation in many classrooms.  相似文献   

3.
The world over, secondary school science is viewed mainly as a practical subject. This may be one reason why effectiveness of teaching approaches in science education has often been judged on the kinds of practical activity with which teachers and students engage. In addition to practical work, language??often written (as in science texts) or oral (as in the form of teacher and student talk)??is unavoidable in effective teaching and learning of science. Generally however, the role of (instructional) language in quality of learning of school science has remained out of focus in science education research. This has been in spite of findings in empirical research on difficulties science students encounter with words of the instructional language used in science. The findings have suggested that use of (instructional) language in science texts and classrooms can be a major influence on the level of students?? understandings and retention of science concepts. This article reports and discusses findings in an investigation of physics teachers?? approaches to use of and their beliefs about classroom instructional language. Direct classroom observations of, interviews with, as well as content analyses of the participant teachers?? verbatim classroom talk, were used as the methods of data collection. Evidence is presented of participant physics teachers?? lack of explicit awareness of the difficulty, nature, and functional value of different categories of words in the instructional language. In conclusion, the implications of this lack of explicit awareness on the general education (initial and in-service) of school physics teachers are considered.  相似文献   

4.
5.
The premise of this paper is that computer science has much to offer the endeavor of instructional improvement. Software design processes employed in computer science for developing software can be used for planning instruction and should improve instruction in much the same manner that design processes appear to have improved software. Techniques for examining the software development process can be applied to an examination of the instructional process. Furthermore, the computer science discipline is particularly well suited to these tasks. Thus, computer science can develop instructional design expertise for export to other disciplines to improve education in all disciplines and, eventually, at all levels.  相似文献   

6.
This article reports on analyses of the instructional practices of six middle- and high-school science teachers in the United States who participated in a research-practice partnership that aims to support reform science education goals at scale. All six teachers were well qualified, experienced, and locally successful—respected by students, parents, colleagues, and administrators—but they differed in their success in supporting students' three-dimensional learning. Our goal is to understand how the teachers' instructional practices contributed to their similarities in achieving local success and to differences in enabling students' learning, and to consider the implications of these findings for research-practice partnerships. Data sources included classroom videos supplemented by interviews with teachers and focus students and examples of student work. We also compared students' learning gains by teacher using pre–post assessments that elicited three-dimensional performances. Analyses of classroom videos showed how all six teachers achieved local success—they led effectively managed classrooms, covered the curriculum by teaching almost all unit activities, and assessed students' work in fair and efficient ways. There were important differences, however, in how teachers engaged students in science practices. Teachers in classrooms where students achieved lower learning gains followed a pattern of practice we describe as activity-based teaching, in which students completed investigations and hands-on activities with few opportunities for sensemaking discussions or three-dimensional science performances. Teachers whose students achieved higher learning gains combined the social stability characteristic of local classroom success with more demanding instructional practices associated with scientific sensemaking and cognitive apprenticeship. We conclude with a discussion of implications for research-practice partnerships, highlighting how partnerships need to support all teachers in achieving both local and standards-based success.  相似文献   

7.
This study of writing‐intensive (WI) undergraduate natural and applied science courses examined the relationships among instructors' course goals, instructional activities, and students' assessment of their learning of content and writing. Using multiple sources of data, investigators found that instructors held common goals but varied greatly in their instructional activities. Findings suggest that science instructors can be described along a continuum anchored by instructor as corrector on one end and instructor as collaborator on the other. Instructors who were the sole audience for a single writing assignment were correctors. Collaborators varied writing tasks, encouraged collaboration, and emphasized professional contexts for writing; they generally received highest student satisfaction ratings. Peer editing assignments that simulated critical, anonymous journal reviews affected female and male students differently. The findings support the National Academy of Science's teaching standards and assumptions concerning the crucial roles of instructors in socializing students into science communities. We discuss instructional strategies that may be more inclusive to traditionally underrepresented groups such as females and minorities. © 2000 John Wiley & Sons, Inc. J Res Sci Teach 37: 3–25, 2000  相似文献   

8.
In this article, the author examines the character of the conversations generated in an elementary teacher group as they worked on mathematical problems together and analyzed their students' work. Two distinct forms of talk — exploratory and expository — were found. The first type of talk occurred most prominently when discussions centered on the teachers' own mathematical work and the second type when conversations centered on that of their students. By examining closely the few occasions when the groups' expository talk turned exploratory, the author explores how both the nature of the tasks and the range and type of facilitator conversational strategies can play significant roles in promoting and interrupting these conversational patterns to educational ends.  相似文献   

9.
10.
The notion of “science for all” suggests that all students—irrespective of achievement and ability—should engage in opportunities to understand the practice and discourse of science. Improving scientific literacy is an intrinsic goal of science education, yet current instructional practices may not effectively support all students, in particular, students with special needs. Argument‐based inquiry approaches, such as the Science Writing Heuristic (SWH), require all students to construct their scientific understandings by engaging in investigations and negotiating their ideas in multiple contexts, such as discussions and writing. Various SWH studies demonstrated that students engaged in appropriating the language, culture, practice, and dispositions of science generally improved their critical thinking and standardized test scores. The implementation of such an approach has several implications for science and special education research and practice, including how learning environments should be established to encourage the inclusion of all students’ ideas, as well as how scaffolded supports can and should be used to support science learning.  相似文献   

11.
12.
Theories of social cognition and verbal communication were used to analyze the science teaching of an experienced fourth-grade teacher. Her teaching skills in language arts and reading were assets in negotiating the rapid flow of relatively unstructured information typical of inquiry in elementary classrooms, to help students generate relevant information about hands-on experience. The teacher was a collaborator in this case study of her thinking and instructional planning, and her students' learning in a unit of instruction about space. Implications for elementary science instruction include recognizing the importance of embedded speech in conceptually broad discussions with students. Efforts to reform elementary science instruction should attend to these instructional skills more common to language arts instruction.  相似文献   

13.
This paper reports on the design and enactment of an instructional strategy aimed to support students in constructing scientific explanations. Informed by the philosophy of science and linguistic studies of science, a new instructional framework called premise–reasoning–outcome (PRO) was conceptualized, developed, and tested over two years in four upper secondary (9th–10th grade) physics and chemistry classrooms. This strategy was conceptualized based on the understanding of the structure of a scientific explanation, which comprises three primary components: (a) premise – accepted knowledge that provides the basis of the explanation, (b) reasoning – logical sequences that follow from the premise, and (c) outcome – the phenomenon to be explained. A study was carried out to examine how the PRO strategy influenced students’ written explanations using multiple data sources (e.g. students’ writing, lesson observations, focus group discussions). Analysis of students’ writing indicates that explanations with a PRO structure were graded better by the teachers. In addition, students reported that the PRO strategy provided a useful organizational structure for writing scientific explanations, although they had some difficulties in identifying and using the structure. With the PRO as a new instructional tool, comparison with other explanation frameworks as well as implications for educational research and practice are discussed.  相似文献   

14.
This paper compares and contrasts the impacts of three professional development designs aimed at middle school Earth science teachers on how teachers plan and enact instruction. The designs were similar in their alignment to research-based practices in science professional development: each design was of an extended duration and time span, included follow-up support to teachers, and incorporated active learning approaches in the professional development. In addition, the designs had a high level of coherence with other reform activities and with local standards. The main difference among the designs was in the roles of teachers in designing, adopting, or adapting curriculum materials. Evidence from teacher survey and observation data indicated that all programs had positive impacts on how teachers planned and enacted teaching for understanding, but differences among programs was more evident in their impacts on instructional planning.  相似文献   

15.
The last two decades have witnessed the gradual implementation of integrated science curriculum at the junior secondary level in China. However, in most provinces of China, the implementation is not as successful as expected. Challenges were reported, yet without fine-grained investigation, with respect to science teachers' instruction on integrated science. In this study, we aim to detect major problems by investigating the instruction of integrated science at the secondary level. Classroom observation focused on the teacher and student verbal behavior, teachers' competency of instructional organization, their presentation of instructional content, and the organization of learning activities. Findings revealed that students were provided with limited opportunities for participating and engaging in learning as science teachers were dominant in classroom talk. Teachers emphasized on the integration of knowledge within one subject (within-subject knowledge), but not the integration of knowledge between subjects (cross-subject knowledge), resulting in the unsuccessful instruction of the integrative content. What is more, teachers were inadequately competent in designing and delivering science, technology and society content, scientific inquiry and scientific experiments, which also affected the quality of instruction on integrated science.  相似文献   

16.
Adapted primary literature (APL) refers to an educational genre specifically designed to enable the use of research articles for learning biology in high school. The present investigation focuses on the paedagogical content knowledge (PCK) of four high‐school biology teachers who enacted an APL‐based curriculum in biotechnology. Using a constructivist qualitative research approach, we analysed those teachers' aims and beliefs, the instructional strategies they used during the enactment of the curriculum, as well as the outcomes of the enactment as perceived by the teachers and their students, and as reflected in the class observations. Some of the teachers' strategies applied during the enactment, such as the conversational model, were specifically designed for teaching APL‐based curricula. We found that the instructional strategies applied for the adapted articles were associated with cognitive and affective engagement, active learning, inquiry thinking, and understanding of the nature of science. Suitable teacher PCK promoted learning by inquiry in addition to learning on inquiry. Students' challenges were mainly linked to the comprehension of complex, multi‐stage, biotechnological processes and methods that are abundant throughout the curriculum and required the use of previous knowledge in new contexts. A complex interaction of factors, namely teachers' PCK, the APL genre, and the biotechnology content of the curriculum, shaped the instructional strategies of the new curriculum and the outcomes of its enactment  相似文献   

17.
In this paper, we examine how students discuss and interpret data and whether these actions vary depending on the type of data they analyse. More specifically, we are interested in whether students perform differently when analysing first‐hand data, which they collect themselves, compared with second‐hand data provided to them. Our data analysis focused on two classrooms using two different curriculum units, chemistry in Grade 7 and biology in Grade 8, collected during the 2002/03 school year from a Mid‐western urban middle school in the USA. We analysed classroom videotape associated with lessons in which students discussed first‐hand and second‐hand data both in small group settings and full class discussions. We found the two types of data offer different benefits and limitations, suggesting that both types of data are important for students to work with as they develop skills in scientific inquiry practices. We discuss the characteristics of classroom discussions around different data sources as well as implications for the design of curriculum materials, instructional environments, and student learning in science.  相似文献   

18.
The intent of national efforts to frame science education standards is to promote students’ development of scientific practices and conceptual understanding for their future role as scientifically literate citizens (NRC 2012). A guiding principle of science education reform is that all students receive equitable opportunities to engage in rigorous science learning. Yet, implementation of science education reform depends on teachers’ instructional decisions. In urban schools serving students primarily from poor, diverse communities, teachers typically face obstacles in providing reform-based science due to limited resources and accountability pressures, as well as a culture of teacher-directed pedagogy, and deficit views of students. The purpose of this qualitative research was to study two white, fourth grade teachers from high-poverty urban schools, who were identified as transforming their science teaching and to investigate how their beliefs, knowledge bases, and resources shaped their planning for reform-based science. Using the Shavelson and Stern’s decision model for teacher planning to analyze evidence gathered from interviews, documents, planning meetings, and lesson observations, the findings indicated their planning for scientific practices was influenced by the type and extent of professional development each received, each teacher’s beliefs about their students and their background, and the mission and learning environment each teacher envisioned for the reform to serve their students. The results provided specific insights into factors that impacted their planning in high-poverty urban schools and indicated considerations for those in similar contexts to promote teachers’ planning for equitable science learning opportunities by all students.  相似文献   

19.
Inquiry instruction often neglects graphing. It gives students few opportunities to develop the knowledge and skills necessary to take advantage of graphs, and which are called for by current science education standards. Yet, it is not well known how to support graphing skills, particularly within middle school science inquiry contexts. Using qualitative graphs is a promising, but underexplored approach. In contrast to quantitative graphs, which can lead students to focus too narrowly on the mechanics of plotting points, qualitative graphs can encourage students to relate graphical representations to their conceptual meaning. Guided by the Knowledge Integration framework, which recognizes and guides students in integrating their diverse ideas about science, we incorporated qualitative graphing activities into a seventh grade web-based inquiry unit about cell division and cancer treatment. In Study 1, we characterized the kinds of graphs students generated in terms of their integration of graphical and scientific knowledge. We also found that students (n = 30) using the unit made significant learning gains based on their pretest to post-test scores. In Study 2, we compared students' performance in two versions of the same unit: One that had students construct, and second that had them critique qualitative graphs. Results showed that both activities had distinct benefits, and improved students' (n = 117) integrated understanding of graphs and science. Specifically, critiquing graphs helped students improve their scientific explanations within the unit, while constructing graphs led students to link key science ideas within both their in-unit and post-unit explanations. We discuss the relative affordances and constraints of critique and construction activities, and observe students' common misunderstandings of graphs. In all, this study offers a critical exploration of how to design instruction that simultaneously supports students' science and graph understanding within complex inquiry contexts.  相似文献   

20.
In a recent issue of this journal, Steven D. Tripp proposed some innovations in the education of instructional designers based on his analysis of education practices in other design professions. His principal proposals were that students should analyze great instructional designs of the past and that instructional design studios should form part of the educational preparation of students entering the profession. This paper proposes some extensions and modifications to Tripp's original ideas. These include extending his concept of the analysis of great lessons of the past to the analysis of current examples of expert work, the use of an expanded jury system to incorporate peer and practitioner evaluation of students' work, and the criticality of students developing solutions to actual performance problems during the instructional design studio experience. Finally, it is proposed that opportunities for critical reflection on the process of instructional design be built into the studio experience.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号