首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Drop jumping has previously been used to measure fast stretch shorten cycle (SSC) ability and stretch load tolerance. To the knowledge of these authors a test does not exist to achieve this in the horizontal direction. The purpose of this study therefore was to estimate the reliability of a new unilateral horizontal leg power test to assess these qualities. Participants (N = 10) performed three jumps on each leg from distances of 80%, 120%, and 160% of leg length onto a force plate, followed immediately by a jump for maximal distance onto a synthetic track. No significant between- leg differences (p > .05) were found for the dependent variables of ground contact time (GCT), peak propulsive vertical ground reaction force, peak propulsive horizontal ground reaction force, and distances jumped (DJ).Within-trial variability (coefficients of variation) ranged from 3.6% to 10.9%, and test-retest reliability intraclass correlation coefficients from 0.80 to 0.95. GCT and DJ were the variables with highest reliability between trials and days. These two variables should be used to indicate fast SSC (GCT) ability and stretch load tolerance (DJ-GCT) in the horizontal direction. The relationship of these measures to functional performance needs to be established.  相似文献   

2.
The aim of this study was to examine changes in indirect markers of muscle damage during 3 weeks of stretch-shortening exercise with a progressively increasing load and continued modulation of various key training variables. Eight healthy untrained men performed a drop-jump programme involving a progressive increase in load impact with respect to the number of jumps performed, drop (platform) height, squat depth amplitude, and addition of weights. Maximal concentric and isometric knee extensor strength were assessed immediately before and 10?min after each training session. Voluntary and 100 Hz-stimulation-evoked torque decreased acutely after each training session relative to pre-exercise values (P?相似文献   

3.
This study analysed the modulation of jump performance, vertical stiffness as well as joint and intralimb coordination throughout a 30-s vertical jump test. Twenty male athletes performed the test on a force plate while undergoing kinematic analysis. Jump height, power output, ground contact time, vertical stiffness, maximum knee and hip flexion angles, and coordination by continuous relative phase (CRP) were analysed. Analysis of variance was used to compare variables within deciles, and t-tests were used to compare CRP data between the initial and final jumps. Results showed reduction in jump height, power output, and vertical stiffness, with an increase in contact time found during the test. Maximum knee and hip flexion angles declined, but hip angle decreased earlier (10–20% of the test) than knee angle (90–100%). No changes were observed in CRP for thigh–leg coupling when comparing initial and final jumps, but the trunk–thigh coupling was more in-phase near the end of the test. We conclude that fatigue causes reduction in jump performance, as well as changes in stiffness and joint angles. Furthermore, changes in intralimb coordination appear at the last 10% of the test, suggesting a neuromotor mechanism to counterbalance the loss of muscle strength.  相似文献   

4.
As hill jumps are very time-consuming, ski jumping athletes often perform various imitation jumps during training. The performed jumps should be similar to hill jumps, but a direct comparison of the kinetic and kinematic parameters has not been performed yet. Therefore, this study aimed to correlate 11 common parameters during hill jumps (Oberstdorf Germany), squat jumps (wearing indoor shoes), and various imitation jumps (rolling 4°, rolling flat, static; jumping equipment or indoor shoes) on a custom-built instrumented vehicle with a catch by the coach. During the performed jumps, force and video data of the take-off of 10 athletes were measured. The imitation and squat jumps were then ranked. The main difference between the hill jumps and the imitation and squat jumps is the higher maximal force loading rate during the hill jumps. Imitation jumps performed on a rolling platform, on flat ground were the most similar to hill jumps in terms of the force–time, and leg joint kinematic properties. Thus, non-hill jumps with a technical focus should be performed from a rolling platform with a flat inrun with normal indoor shoes or jumping equipment, and high normal force loading rates should be the main focus of imitation training.  相似文献   

5.
Change of direction speed (CODS) underpins performance in a wide range of sports but little is known about how stiffness and asymmetries affect CODS. Eighteen healthy males performed unilateral drop jumps to determine vertical, ankle, knee and hip stiffness, and a CODS test to evaluate left and right leg cutting performance during which ground reaction force data were sampled. A step-wise regression analysis was performed to ascertain the determinants of CODS time. A two-variable regression model explained 63% (R2 = 0.63; P = 0.001) of CODS performance. The model included the mean vertical stiffness and jump height asymmetry determined during the drop jump. Faster athletes (n = 9) exhibited greater vertical stiffness (F = 12.40; P = 0.001) and less asymmetry in drop jump height (F = 6.02; P = 0.026) than slower athletes (n = 9); effect sizes were both “large” in magnitude. Results suggest that overall vertical stiffness and drop jump height asymmetry are the strongest predictors of CODS in a healthy, non-athletic population.  相似文献   

6.
Warm-up protocols are commonly used to acutely enhance the performance of dynamic activities. This study examined the acute effect of low-load gluteal exercises on the biomechanics of single-leg drop jumps. Eight men and seven women (18–22 years old) performed 10 single-leg drop jumps on three separate days. The gluteal exercises were performed within the warm-up on day 2. Contact time, flight time, peak vertical ground reaction force (GRF), rate of force development, vertical leg-spring stiffness, and reactive strength index were determined. A repeated measures analysis of variance was used to examine differences on all variables across days. Significant differences were found for contact time, peak GRF, and flight time between days 1 and 2 and for flight time between days 1 and 3 (p ≤ 0.05) with no significant difference in any variables between days 2 and 3. This suggested that the improvements in day 2 were due to practice effects rather than the gluteal activation exercises. In addition, a typical error analysis was used to determine individual responses to the gluteal exercises. The results using this analysis showed no discernible response pattern of enhancement or fatigue for any participant.  相似文献   

7.
Abstract

To determine the time course of performance responses after an acute bout of plyometric exercise combined with high and low intensity weight training, a 3-group (including a control group), repeated-measures design was employed. Changes in performance were monitored through jumping ability by measuring countermovement and squat jumping, and strength performance assessment through isometric and isokinetic testing of knee extensors (at two different velocities). Participants in both experimental groups performed a plyometric protocol consisting of 50 jumps over 50 cm hurdles and 50 drop jumps from a 50 cm plyometric box. Additionally, each group performed two basic weight exercises consisting of leg presses and leg extensions at 90–95% of maximum muscle strength for the high intensity group and 60% of maximum muscle strength for the low intensity group. The results of the study suggest that an acute bout of intense plyometric exercise combined with weight exercise induces time-dependent changes in performance, which are also dependent on the nature of exercise protocol and testing procedures. In conclusion, acute plyometric exercise with weight exercise may induce a substantial decline in jumping performance for as long as 72 hours but not in other forms of muscle strength.  相似文献   

8.
The study examined the differences between boys and adults after an intense stretch-shortening cycle fatigue protocol on neuromechanical parameters of the lower limb. Thirteen boys (9–11 years old) and 13 adult men (22–28 years old) were tested for maximal isometric voluntary knee extension torque and drop jump (DJ) performance from 30 cm before and immediately after a fatigue protocol, consisted of 10 × 10 maximum effort vertical jumps. Three-dimensional kinematics, kinetics and electromyographic (EMG) parameters of the lower extremities muscles were recorded during DJs before and after the fatigue test. The results indicated that reduction in maximal isometric torque and jumping performance was significantly higher in adults compared to boys. Vertical ground reaction forces, contact time and maximum knee flexion increased in a greater extend in adults than in boys. In addition, preactivation, EMG agonist activity, knee joint stiffness and stretch reflex decreased more in adults than in boys at all the examined phases of jumping tasks. It is concluded that employed fatigue protocol induced acute reduction in performance and altered motor control during jumping in both age groups. However, the differences in the level of fatigue between the 2 groups could be attributed to neuromuscular, mechanical and kinematic parameters observed between groups.  相似文献   

9.
ABSTRACT

This study investigated the between-limb asymmetry in kinetic and temporal characteristics during bilateral plyometric drop jumps from different heights. Seventeen male basketball players performed drop jumps from 3 heights on two platforms in randomized orders. Vertical ground reaction force data were analysed with respect to the lead limb (i.e. the limb stepping off the raised platform first) and trail limb. Peak forces and loading rates of each limb were calculated. The absolute time differential between the two limbs at initial ground contact and takeoff were determined. The frequency of symmetrical landing and taking off with “both limbs together” were counted using 3 time windows. Results showed that the lead limb displayed higher peak forces and loading rates than the trail limb across all heights (p <.05). As drop height increased, the absolute time differentials decreased at initial ground contact (p <.001) but increased at takeoff (p =.035). The greater the preset time window, the more landings and takeoffs were classified as bilaterally symmetrical. In conclusion, higher drop heights allowed subjects to become more bilaterally symmetrical in the timing of landing but this reduction in temporal asymmetry did not accompany with any reduction in kinetic asymmetry.  相似文献   

10.
ABSTRACT

This study investigated the role of reactive and eccentric strength in stiffness regulation during maximum velocity sprinting (Vmax) in team sport athletes compared with highly trained sprinters. Thirteen team sport athletes and eleven highly trained sprinters were recruited. Vmax was measured using radar, and stiffness regulation was inferred from modelled vertical and leg spring stiffness. Reactive strength (RSI) was determined from a 0.50 m drop jump, and an eccentric back squat was used to assess maximum isoinertial eccentric force. Trained sprinters attained a higher Vmax than team sport athletes, partly due to a briefer contact time and higher vertical stiffness. Trained sprinters exhibited a moderately higher RSI via the attainment of a briefer and more forceful ground contact phase, while RSI also demonstrated large to very large associations with vertical stiffness and Vmax, respectively. Isoinertial eccentric force was largely correlated with Vmax, but only moderately correlated with vertical stiffness. Reactive and eccentric strength contribute to the ability to regulate leg spring stiffness at Vmax, and subsequently, the attainment of faster sprinting speeds in highly trained sprinters versus team sport athletes. However, stiffness regulation appears to be a task-specific neuromuscular skill, reinforcing the importance of specificity in the development of sprint performance.  相似文献   

11.
The purpose of this study was the experimental validation of the OpenGo sensor insole system compared to PedarX sensor insole and AMTI force-plate systems. Sixteen healthy participants performed trials in walking, running, jumping (drop and counter movement jumps), imitation drills and balance, with simultaneous measures of all three systems. Detected ground contact and flight times with OpenGo during walking, running and jumping were similar to those of AMTI. Force–time curves revealed comparable shapes between all three systems. Force impulses were 13–34% lower with OpenGo when compared to AMTI. Despite differences in mean values in some exercise modes, correlations towards AMTI were between r = 0.8 and r = 1.0 in most situations. During fast motions, with high force and impact, OpenGo provided lower force and latency in force kinetics. During balance tasks, discrepancy in the centre of pressure was found medio-lateral, while anterio–posterior direction was closer to AMTI. With awareness of these limitations, OpenGo can be applied in both clinical and research settings to evaluate temporal, force and balance parameters during different types of motion. The fully mobile OpenGo system allows for the easy and quick system application, analysis and feedback under complex field conditions, as well.  相似文献   

12.
Abstract

Pre-programmed and stretch-induced muscle activities of agonist muscles can play important roles during stretch-shortening cycle exercises. It is still not clear how the antagonist muscles function when the drop and rebound intensities are varied during drop jump (DJ) exercises. The purpose of the present study was to examine the regulation of agonist–antagonist muscle activation during DJ with different drop and rebound heights. The subjects performed DJs with two drop heights (0.2 and 0.4 m) and three different efforts (maximal rebound height, 50% effort of maximal rebound height and landing without rebound). Ankle and knee joint angles, and vertical ground reaction force together with an electromyogram of the lower leg muscles (medial gastrocnemius [MG], soleus [SOL] and tibialis anterior [TA]) were measured simultaneously during DJ. Our results clearly showed that the pre-activation of the antagonist TA was increased with increasing rebound height. Our results further showed that the coactivations of agonist and antagonist muscles during the post-impact 30-ms phase were increased with increasing rebound height. These results suggested that not only the pre-programmed agonist MG muscle activation, but also the pre-programmed antagonist TA activation and the coactivation of the post-impact 30-ms phase may play important roles in the control of rebound height.  相似文献   

13.
Artistic gymnasts are frequently exposed to both low- and high-magnitude loads through impacts with the apparatus. These impact loads are thought to be associated with the high injury rates observed in gymnastics. Due to the variable apparatus and surfaces in gymnastics, impact loads during training are difficult to quantify. This study aimed to use triaxial accelerometers mounted on the back to assess impact loading during jumping and landing tasks. Twelve participants were fitted with an accelerometer on their upper and lower back, before performing a continuous hopping task, as well as drop landings and rebound jumps from various heights (37.5, 57.5, and 77.5 cm) onto a force platform. Peak resultant acceleration (PRA) was low-pass filtered with four cut-off frequencies (8, 15, 20, and 50 Hz). Filtering of PRA with the 20 Hz cut-off frequency showed the highest correlations between ground reaction force (GRF) and PRA. PRA recorded at the upper back, filtered with a 20 Hz cut-off frequency, appears to provide a good estimate of impact loading for continuous hopping and rebound jumps, but less so for drop landings since correlations between GRF and PRA were only significant when landing from 57.5 cm.  相似文献   

14.
The aim of this study was to determine whether sex differences and effect of drop heights exist in stiffness alteration of the lower extremity during a landing task with a drop height increment. Twelve male participants and twelve female participants performed drop landings at two drop heights (DL40 and DL60; in cm). The leg and joint stiffnesses were calculated using a spring–mass model, and the joint angular kinematics were calculated using motion capture. Ground reaction forces (GRFs) were recorded using a force plate. The peak vertical GRF of the females was significantly increased when the drop height was raised from 40 to 60 cm. Significantly less leg and knee stiffness was observed for DL60 in females. The ankle, knee, and hip angular displacement during landing were significantly increased with drop height increment in both sexes. The knee and hip flexion angular velocities at contact were significantly greater for the 60 cm drop height relative to the 40 cm drop height in males. These sex disparities regarding the lower extremity stiffness and kinematics alterations during drop landing with a drop height increment would predispose females to lower extremity injury.  相似文献   

15.
Length changes in vastus lateralis fascicles were measured in vivo using ultrasonography during one-legged squat jumps (SJ), counter movement jumps (CMJ), and drop jumps (DJ) in the sledge apparatus (n = 9). Patellar tendon forces were recorded simultaneously with an optic fiber technique from 4 subjects. Fascicle length changes were compared with muscletendon unit length changes calculated from kinematic recordings. In general, the tendomuscular and fascicle length changes demonstrated similar patterns. During SJ the fascicles showed shortening throughout the action while during CMJ and DJ they underwent stretch-shortening cycle. In DJ greater muscular activity in braking phase.  相似文献   

16.
The aim of the present study was to examine the effects of viscoelastic properties of human tendon structures during stretch - shortening cycle exercise. The elongation of tendon and aponeurosis of the medial gastrocnemius muscle of 26 participants was measured by ultrasonography while they performed ramp isometric plantar flexion up to the voluntary maximum, followed by a ramp relaxation. The relationship between estimated muscle force and tendon elongation during the ascending phase was fitted to a linear regression, the slope of which was defined as stiffness. The percentage of the area within the muscle force-tendon elongation loop relative to the area beneath the curve during the ascending phase was defined as hysteresis. In addition, maximal voluntary concentric contractions at 2.09 and 3.14 rad x s(-1) with and without prior eccentric contractions were performed. The difference in the concentric torque at equivalent joint angles with and without prior eccentric contractions (i.e. pre-stretch augmentation) was negatively correlated with stiffness (P < 0.05) and hysteresis (P < 0.05). Furthermore, there was a higher correlation between the pre-stretch augmentation and the viscoelastic properties index--that is, the sum of normalized score values of stiffness and hysteresis (P < 0.01)--than with either stiffness or hysteresis alone. The results of this study suggest that performance during stretch-shortening cycle exercise is significantly affected by the viscoelastic properties of the tendon structures.  相似文献   

17.
Eccentric strength training is thought to be important for improving functional performance. A form of training that may enhance the eccentric training stimulus is the attachment of a rubber bungy to the strength-training apparatus in such a way that the return velocity and, therefore, the force required to decelerate the load at the end of the eccentric phase are increased. To determine the effects of elastic bungy training, we performed two studies. In the first, we examined the electromyographic (EMG) and kinematic characteristics of three different squat techniques: traditional squat, non-bungy jump squat and bungy jump squat. In the second study, we examined whether jump squat training with and without the attachment of a rubber bungy to an isoinertial supine squat machine affects muscle function, multidirectional agility, lunge ability and single leg jump performance. The EMG activity of the vastus lateralis and gastrocnemius muscles was recorded. An instrumented isoinertial supine squat machine was used to measure maximal strength and various force, velocity and power measures in both studies. Participants were randomly assigned to one of three groups: a control group and two weight-trained groups, one of which performed bungy squat jumps and one of which performed non-bungy squat jumps. The two experimental groups performed 10 weeks of ballistic weight training. The kinematic and EMG characteristics of the bungy and non-bungy squat techniques differed significantly from those of the traditional squat on all the variables measured. The only difference between the bungy squat and non-bungy squat training was greater EMG activity during the later stages (70-100%) of the eccentric phase of the bungy squat condition. The 10 weeks of bungy squat and non-bungy squat jump weight training were found to be equally effective in producing improvements in a variety of concentric strength and power measures (10.6-19.8%). These improvements did not transfer to improved performance for the single leg jump and multidirectional agility. However, bungy weight training did lead to a significant improvement in lunge performance (21.5%) compared with the other groups.  相似文献   

18.
Many sport and exercise activities require powerful movements of the upper body. Despite their importance, there is a paucity of research examining stretch-shortening cycle (SSC) activities occurring in the upper limbs. The purpose of this study was to examine the effect of fatigue on throwing performance (height of throw) and biomechanical factors of the upper limbs (reactive strength index; hand contact time) using a specially constructed sledge apparatus for the upper body. Ten male subjects aged between 19 and 21 years performed a series of rebound throws (RBT) in a non-fatigued state to obtain a maximal baseline throw score. Subjects then performed a RBT fatiguing protocol on the upper body sledge followed by further RBT, at 15, 45, 120 and 300-seconds post fatigue. Markers on the subjects' limb and the sledge were analysed using Motion Analysis Corporation 3-D kinematic analysis system (200 Hz). Throwing height, contact time and reactive strength index were determined. Mean throwing height and reactive strength index showed significant decreases following fatigue and increases during recovery (p < 0.05). The results confirm the presence ofpost-activation potentiation (PAP) in RBT performance. This finding could be useful when optimising recovery periods in training or implementing complex training methods.  相似文献   

19.
Strength training with isometric contractions produces large but highly angle-specific adaptations. To contrast the contractile mode of isometric versus dynamic training, but diminish the strong angle specificity effect, we compared the strength gains produced by isometric training at four joint angles with conventional dynamic training. Thirty-three recreationally active healthy males aged 18 - 30 years completed 9 weeks of strength training of the quadriceps muscle group three times per week. An intra-individual design was adopted: one leg performed purely isometric training at each of four joint angles (isometrically trained leg); the other leg performed conventional dynamic training, lifting and lowering (dynamically trained leg). Both legs trained at similar relative loads for the same duration. The quadriceps strength of each leg was measured isometrically (at four angles) and isokinetically (at three velocities) pre and post training. After 9 weeks of training, the increase in isokinetic strength was similar in both legs (pooled data from three velocities: dynamically trained leg, 10.7%; isometrically trained leg, 10.5%). Isometric strength increases were significantly greater for the isometrically trained leg (pooled data from four angles: dynamically trained leg, 13.1%; isometrically trained leg, 18.0%). This may have been due to the greater absolute torque involved with isometric training or a residual angle specificity effect despite the isometric training being divided over four angles.  相似文献   

20.
This study investigated the influence of a horizontal approach to mechanical output during drop jumps. Participants performed drop jumps from heights of 15, 30, 45, and 60 cm with zero, one, two, and three approach steps. The peak summed power during the push-off phase changed quadratically across heights (6.2 +/- 0.3, 6.7 +/- 0.4, 6.4 +/- 0.4, and 6.0 +/- 0.4 kW, respectively) driven by the ankle joint response. Summed peak power was 10% greater with an approach attributed to the knee joint response. Downward phase dorsiflexion (31%), knee flexion (35%), and peak vertical force (32%) increased with drop heights. Vertical approach force (22%) increased, while knee flexion (11%) and downward duration (17%) decreased. An approach may improve drop jump training for explosive tasks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号