首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to investigate the effect of hip external rotation (turnout) on lower limb kinetics during vertical jumps by classical ballet dancers. Vertical jumps in a turnout (TJ) and a neutral hip position (NJ) performed by 12 classical female ballet dancers were analysed through motion capture, recording of the ground reaction forces, and inverse dynamics analysis. At push-off, the lower trunk leaned forward 18.2° and 20.1° in the TJ and NJ, respectively. The dancers jumped lower in the TJ than in the NJ. The knee extensor and hip abductor torques were smaller, whereas the hip external rotator torque was larger in the TJ than in the NJ. The work done by the hip joint moments in the sagittal plane was 0.28 J/(Body mass*Height) and 0.33 J/(Body mass*Height) in the TJ and NJ, respectively. The joint work done by the lower limbs were not different between the two jumps. These differences resulted from different planes in which the lower limb flexion–extension occurred, i.e. in the sagittal or frontal plane. This would prevent the forward lean of the trunk by decreasing the hip joint work in the sagittal plane and reduce the knee extensor torque in the jump.  相似文献   

2.
Turnout is a central element of classical ballet which involves sustained external rotation of the lower limbs during dance movements. Lower leg and foot compensation mechanisms which are often used to increase turnout have been attributed to the high incidence of lower limb injury in dancers. Evaluation of dancers’ leg posture is needed to provide insight into the lower limb kinematic strategies used to achieve turnout. The primary purpose of this study was to use 3D kinematic analyses to determine the lower leg and foot compensations that are incorporated by female university dancers to accentuate their turnout. Active and passive external tibiofemoral rotation (TFR) was also measured. A moderate-strong negative relationship was observed between hip external rotation (HER) and foot abduction in the three first position conditions. A moderate negative relationship was found between passive TFR and foot abduction in all first position conditions. Our findings suggest dancers are more likely to pronate, than rotate the knee to compensate for limited HER. Dancers with a limited capacity to pronate may force additional rotation via the knee. Ongoing research would benefit from more in-depth analyses of the foot/ankle complex using a multi-segment foot model.  相似文献   

3.
This study presents the kinematics and plantar pressure characteristics of eight elite national-level badminton athletes and eight recreational college-level badminton players while performing a right-forward lunge movement in a laboratory-simulated badminton court. The hypothesis was that recreational players would be significantly different from elite players in kinematics and plantar pressure measures. Vicon® motion capture and Novel® insole plantar pressure measurement were simultaneously taken to record the lower extremity kinematics and foot loading during stance. Recreational players showed significantly higher peak pressure in the lateral forefoot (P = 0.002) and force time integral in the lateral forefoot (P = 0.013) and other toes (P = 0.005). Elite athletes showed higher peak pressure in the medial forefoot (P = 0.003), hallux (P = 0.037) and force time integral in the medial forefoot (P = 0.009). The difference in landing techniques for the lunge step between elite athletes and recreational players was observed with peak ankle eversion (?38.2°±2.4° for athletes and ?11.1°±3.9° for players, P = 0.015); smaller knee range of motion in the coronal and transverse planes, with differences in peak knee adduction (28.9°±6.8° for athletes and 15.7°±6.2° for players, P = 0.031); peak knee internal rotation (20.3°±1.3° for athletes and 11.8°±3.2° for players, P = 0.029) and peak hip flexion (77.3°±4.1° for athletes and 91.3°±9.3° for players, P = 0.037).  相似文献   

4.
Abstract

Anterior cruciate ligament (ACL) rupture, during ski-landing, is caused by excessive knee joint forces and kinematics, like anterior tibial translation, internal tibial rotation, and valgus rotation. It is not well understood how these forces/kinematics are directly related to ski-landing impact. In the present study, we applied simulated ski-landing impact to knee specimens, and examined joint force/kinematic responses and their correlations with impact force. Ten human cadaveric knees were subjected to axial impact loading at 70° of flexion to simulate ski-landing impact. Impact was repeated with incremental magnitude until ACL failure. Axial impact forces, anterior-posterior and medial-lateral tibial forces were measured using a tri-axial load cell. Anterior-posterior tibial translation, internal-external tibial rotation, and valgus-varus rotation were determined using a motion-capture system. We found positive correlations of axial impact force with anterior tibial force, medial tibial force, anterior tibial translation, internal tibial rotation, and valgus joint rotation. Axial impact forces were more strongly correlated with anterior tibial forces (R 2 = 0.937 ± 0.050), anterior tibial translation (R 2 = 0.916 ± 0.059), and internal tibial rotation (R 2 = 0.831 ± 0.141) than medial tibial force (R 2 = 0.677 ± 0.193) and valgus joint rotation (R 2 = 0.630+0.271). During ski-landing, these joint forces/kinematics can synergistically act to increase ACL injury risk, whereby the failure mechanism would be dominated by anterior tibial forces, anterior tibial translation, and internal tibial rotation.  相似文献   

5.
In lateral reactive movements, core stability may influence knee and hip joint kinematics and kinetics. Insufficient core stabilisation is discussed as a major risk factor for anterior cruciate ligament (ACL) injuries. Due to the higher probability of ACL injuries in women, this study concentrates on how gender influences trunk, pelvis and leg kinematics during lateral reactive jumps (LRJs). Perturbations were investigated in 12 men and 12 women performing LRJs under three different landing conditions: a movable landing platform was programmed to slide, resist or counteract upon landing. Potential group effects on three-dimensional trunk, pelvic, hip and knee kinematics were analysed for initial contact (IC) and the time of peak pelvic medial tilt (PPT). Regardless of landing conditions, the joint excursions in the entire lower limb joints were gender-specific. Women exhibited higher trunk left axial rotation at PPT (women: 4.0 ± 7.5°, men: ?3.1 ± 8.2°; p = 0.011) and higher hip external rotation at both IC and PPT (p < 0.01). But women demonstrated higher knee abduction compared to men. Men demonstrated more medial pelvic tilt at IC and especially PPT (men: –5.8 ± 4.9°, women: 0.3 ± 6.3°; p = 0.015). Strategies for maintaining trunk, pelvis and lower limb alignment during lateral reactive movements were gender-specific; the trunk and hip rotations displayed by the women were associated with the higher knee abduction amplitudes and therefore might reflect a movement strategy which is associated with higher injury risk. However, training interventions are needed to fully understand how gender-specific core stability strategies are related to performance and knee injury.  相似文献   

6.
The purpose of this study was to determine the intra and inter-assessor repeatability of a modified Rizzoli Foot Model for analysing the foot kinematics of ballet dancers. Six university-level ballet dancers performed the movements; parallel stance, turnout plié, turnout stance, turnout rise and flex-point-flex. The three-dimensional (3D) position of individual reflective markers and marker triads was used to model the movement of the dancers’ tibia, entire foot, hindfoot, midfoot, forefoot and hallux. Intra and inter-assessor reliability demonstrated excellent (ICC ≥ 0.75) repeatability for the first metatarsophalangeal joint in the sagittal plane. Intra-assessor reliability demonstrated excellent (ICC ≥ 0.75) repeatability during flex-point-flex across all inter-segmental angles except for the tibia-hindfoot and hindfoot-midfoot frontal planes. Inter-assessor repeatability ranged from poor to excellent (0.5 > ICC ≥ 0.75) for the 3D segment rotations. The most repeatable measure was the tibia-foot dorsiflexion/plantar flexion articulation whereas the least repeatable measure was the hindfoot-midfoot adduction/abduction articulation. The variation found in the inter-assessor results is likely due to inconsistencies in marker placement. This 3D dance specific multi-segment foot model provides insight into which kinematic measures can be reliably used to ascertain in vivo technical errors and/or biomechanical abnormalities in a dancer’s foot motion.  相似文献   

7.
The treadmill is an attractive device for the investigation of human locomotion, yet the extent to which lower limb kinematics differ from overground running remains a controversial topic. This study aimed to provide an extensive three-dimensional kinematic comparison of the lower extremities during overground and treadmill running. Twelve participants ran at 4.0 m/s ( ± 5%) in both treadmill and overground conditions. Angular kinematic parameters of the lower extremities during the stance phase were collected at 250 Hz using an eight-camera motion analysis system. Hip, knee, and ankle joint kinematics were quantified in the sagittal, coronal, and transverse planes, and contrasted using paired t-tests. Of the analysed parameters hip flexion at footstrike and ankle excursion to peak angle were found to be significantly reduced during treadmill running by 12° (p = 0.001) and 6.6° (p = 0.010), respectively. Treadmill running was found to be associated with significantly greater peak ankle eversion (by 6.3°, p = 0.006). It was concluded that the mechanics of treadmill running cannot be generalized to overground running.  相似文献   

8.
Running on side-sloped surfaces is a common obstacle in the environment; however, how and to what extent the lower extremity kinematics adapt is not well known. The purpose of this study was to determine the effects of side-sloped surfaces on three-dimensional kinematics of hip, knee, and ankle during stance phase of running. Ten healthy adult males ran barefoot along an inclinable runway in level (0°) and side-sloped (10° up-slope and down-slope inclinations, respectively) configurations. Right hip, knee, and ankle angles along with their time of occurrence were analysed using repeated measures MANOVA. Up-slope hip was more adducted (p = 0.015) and internally rotated (p = 0.030). Knee had greater external rotations during side-sloped running at heel-strike (p = 0.005), while at toe-off, it rotated externally and internally during up-slope and down-slope running, respectively (p = 0.001). Down-slope ankle had greatest plantar flexion (p = 0.001). Up-slope ankle had greatest eversion compared with down-slope (p = 0.043), while it was more externally rotated (p = 0.030). These motion patterns are necessary to adjust the lower extremity length during side-sloped running. Timing differences in the kinematic events of hip adduction and external rotation, and ankle eversion were observed (p = 0.006). Knowledge on these alterations is a valuable tool in adopting strategies to enhance performance while preventing injury.  相似文献   

9.
The incidence of patellofemoral pain (PFP) is 2 times greater in females compared with males of similar activity levels; however, the exact reason for this discrepancy remains unclear. Abnormal mechanics of the hip and knee in the sagittal, frontal, and transverse planes have been associated with an increased risk of PFP. The purpose of this study was to compare the mechanics of the lower extremity in males and females during running in order to better understand the reason(s) behind the sex discrepancy in PFP. Three-dimensional kinematic and kinetic data were collected as male and female participants completed overground running trials at a speed of 4.0 m · s?1 (±5%). Patellofemoral joint stress (PFJS) was estimated using a sagittal plane knee model. The kinematics of the hip and knee in the frontal and transverse planes were also analysed. Male participants demonstrated significantly greater sagittal plane peak PFJS in comparison with the female participants (P < .001, ES = 1.9). However, the female participants demonstrated 3.5° greater peak hip adduction and 3.4° greater peak hip internal rotation (IR). As a result, it appears that the sex discrepancy in PFP is more likely to be related to differences in the kinematics of the hip in the frontal and transverse planes than differences in sagittal plane PFJS.  相似文献   

10.
Although most ACL injury prevention programmes encourage greater hip and knee flexion during landing, it remains unknown how this technique influences tibiofemoral joint forces. We examined whether a landing strategy utilising greater hip and knee flexion decreases tibiofemoral anterior shear and compression. Twelve healthy women (25.9 ± 3.5 years) performed a drop-jump task before and after a training session (10–15 min) that emphasised greater hip and knee flexion. Peak tibiofemoral anterior shear and compressive forces were calculated using an electromyography (EMG)-driven knee model that incorporated joint kinematics, EMG and participant-specific muscle volumes and patella tendon orientation measured using magnetic resonance imaging (MRI). Participants demonstrated a decrease in peak anterior tibial shear forces (11.1 ± 3.3 vs. 9.6 ± 2.7 N · kg?1; P = 0.008) and peak tibiofemoral compressive forces (68.4 ± 7.6 vs. 62.0 ± 5.5 N · kg?1; P = 0.015) post-training. The decreased peak anterior tibial shear was accompanied by a decrease in the quadriceps anterior shear force, while the decreased peak compressive force was accompanied by decreased ground reaction force and hamstring forces. Our data provide justification for injury prevention programmes that encourage greater hip and knee flexion during landing to reduce tibiofemoral joint loading.  相似文献   

11.
This study investigated the three-dimensional (3-D) pedaling kinematics using a noncircular chainring system and a conventional system. Five cyclists pedaled at their preferred cadence at a workload of 300 W using two crank systems. Flexion/extension of the hip, knee and ankle as well as shank rotation, foot adduction/abduction, and pedal angle were measured. Joint range of motion (ROM) and angular displacements were compared between the systems. Sagittal plane ROM was significantly greater (P < 0.05) at the hip (noncircular system = 39 ± 3°; conventional system = 34 ± 4°) the knee (noncircular system = 69 ± 4°; conventional system = 57 ± 10°), and ankle (noncircular system = 21 ± 2°; conventional system = 19 ± 4°) resulting in greater pedal ROM (noncircular system = 43 ± 3°; conventional system = 37 ± 5°) while using the noncircular system. Shank rotation ROM was significantly lower (P < 0.05) while using the noncircular chainring (noncircular system = 10 ± 1°; conventional system = 14 ± 1°). These results support a significant effect of the noncircular chainring system on pedaling kinematics during submaximal exercise.  相似文献   

12.
This study assessed kinematic differences between different foot strike patterns and their relationship with peak vertical instantaneous loading rate (VILR) of the ground reaction force (GRF). Fifty-two runners ran at 3.2 m · s?1 while we recorded GRF and lower limb kinematics and determined foot strike pattern: Typical or Atypical rearfoot strike (RFS), midfoot strike (MFS) of forefoot strike (FFS). Typical RFS had longer contact times and a lower leg stiffness than Atypical RFS and MFS. Typical RFS showed a dorsiflexed ankle (7.2 ± 3.5°) and positive foot angle (20.4 ± 4.8°) at initial contact while MFS showed a plantar flexed ankle (?10.4 ± 6.3°) and more horizontal foot (1.6 ± 3.1°). Atypical RFS showed a plantar flexed ankle (?3.1 ± 4.4°) and a small foot angle (7.0 ± 5.1°) at initial contact and had the highest VILR. For the RFS (Typical and Atypical RFS), foot angle at initial contact showed the highest correlation with VILR (r = ?0.68). The observed higher VILR in Atypical RFS could be related to both ankle and foot kinematics and global running style that indicate a limited use of known kinematic impact absorbing “strategies” such as initial ankle dorsiflexion in MFS or initial ankle plantar flexion in Typical RFS.  相似文献   

13.
郭梁  吴瑛  徐涛 《体育科研》2015,(5):71-75
为了探究躯干转动在背越式跳高起跳、腾空阶段的生物力学规律,采用文献资料法、影像分析法、数理统计法等研究方法,对国内9名优秀男子跳高运动员进行运动学分析。研究结果显示:运动员起跳过程中3个时间点躯干纵轴与Y轴的夹角均值分别为(74.8±1.9)°、(81.3±1.9)°、(92.5±2.0)°;躯干三环节与XOY面夹角减小和增加的顺序(由快到慢)是:胸部段>腹部段>髋部段。研究认为:起跳离地瞬间适宜的躯干纵轴外倾角度(92°左右)除了可以避免身体碰触横杆和提高身体垂直速度外,还可以使身体获得足够的翻转角动量;在起跳和腾空过杆过程中,肩部发挥了引领作用。  相似文献   

14.
研究目的:探究拖重物跑训练手段对短跑运动员的身体素质、途中跑阶段的技术特征及下肢环节肌肉力量的影响,深入认识其对短跑途中跑技术和专项力量的作用机制。研究方法:对14名男子二级左右水平短跑运动员进行为期8周每周3次6%~10% BM负荷的拖重物跑训练,采用高速摄像分析法、等动肌力测试法分析运动员身体素质;支撑阶段髋、膝、踝关节运动学参数和下肢各环节肌肉力量实验前后的变化情况。结果:(1)实验后运动员30m、60m、立定跳远、立定三级跳远等身体素质及专项成绩显著提高;(2)步长、重心水平速度显著性提高,两大腿剪绞平均速度提高、单步时间减少;支撑阶段最小膝、踝角显著降低,角速度提高;(3)髋、膝关节伸/屈肌群PT/BW、AP除膝关节60°/sPT/BW值未见统计学意义,其余各角速度下PT/BW、AP均呈显著性差异,踝关节跖屈肌群各角速度下PT/BW值显著提高,跖屈肌群60°/s速度下AP提高,背屈肌群AP略降低。结论:适宜负荷的拖重物跑训练可显著改善短跑运动员运动素质、提高运动成绩;有利于提高髋关节剪绞-制动力量,使膝、踝关节处于低位超等长"屈蹬"状态;提高了髋、膝关节屈伸肌群快速主动收缩能力及踝关节跖屈肌群退让性快速收缩能力。  相似文献   

15.
The purpose of this study was to examine the relationship between dynamic hip rotational range of motion and upper extremity kinematics during baseball pitching. Thirty-one youth baseball pitchers (10.87 ± 0.92 years; 150.03 ± 5.48 cm; 44.83 ± 8.04 kg) participated. A strong correlation was found between stance hip rotation and scapular upward rotation at maximum shoulder external rotation (r = 0.531, = 0.002) and at ball release (r = 0.536, = 0.002). No statistically significant correlations were found between dynamic hip rotational range of motion and passive hip range of motion. Hip range of motion deficits can constrain pelvis rotation and limit energy generation in the lower extremities. Shoulder pathomechanics can then develop as greater responsibility is placed on the shoulder to generate the energy lost from the proximal segments, increasing risk of upper extremity injury. Additionally, it appears that passive seated measurements of hip range of motion may not accurately reflect the dynamic range of motion of the hips through the progression of the pitch cycle.  相似文献   

16.
Abstract

Lateral movements like cutting are essential in many team sport disciplines. The aim of the present study was to analyse adaptations in motor control in response to task unpredictability during lateral movement execution. Twelve subjects performed lateral jumps with different landing modalities (stable, sliding or counteracting) that were either known (predictable setting) or unknown (unpredictable setting) prior to movement execution. Results revealed that regardless of the landing modality, hip joint abduction was significantly greater in the unpredictable compared to predictable setting. Furthermore, during the sliding landing modality, hip flexion decreased from 211 ± 7° to 207 ± 7° and knee flexion decreased from 26 ± 4° to 24 ± 4° at the instant of ground contact in the unpredictable compared to predictable condition. During the stable landing modality, the knee joint abduction increased from ?0.3 ± 6° to ?3 ± 6° after initial ground contact in the unpredictable compared to predictable setting. The present results support our hypothesis that pre-programmed motor activity depends on the predictability of the landing modality during lateral movements. According to its adaptation in the frontal plane and in some extent in the sagittal plane, the hip joint seems to play the major role in the modulation of the pre-programmed activity for successful lateral jump execution in an unpredictable setting. However, these kinematic adaptations are concerning since these changes were associated with higher knee abduction during the stable landing modality and therefore with possible higher risk of injury.  相似文献   

17.
There is a paucity of data describing the lofted instep kick and little information on the kinematic differences between male and female footballers. This study provides a preliminary investigation into the differences in motion patterns between the sexes. A four-camera motion analysis system videoed 13 amateur footballers (7 female and 6 male) attempting a standardised task that represented a lofted instep kick of approximately 35 m. Footballers performed 20 kicks, with the three trials categorised closest to the standardised distance retained for statistical analysis. Three-dimensional motion patterns for kicks of 35 m illustrated that female footballers produced greater fluctuation in movement patterns for pelvic, hip joint and thoracolumbar spine motion in the frontal plane; thorax and hip joint transverse rotation; and ankle dorsiflexion/plantarflexion motion. Peak hip extension (P = 0.018), impact hip abduction (P = 0.032), impact ankle plantar flexion (P = 0.030) and resultant ball velocity (P = 0.004) differed significantly between sexes. Principle component analysis highlighted associations between kinematic variables related to ball velocity and sex including a reduced hip abduction and increased internal rotation approaching impact, and greater peak knee flexion, respectively. In summary, increased variation in direction of segment motion, increased backswing and formation of a tension arc by females compared to males, may be related to anthropometric, strength and muscle activation differences. Specifically, this exploratory study indicates future research would benefit from exploring trunk, pelvis and hip kinematics and kinetics, and whether training the trunk, pelvis and hip musculature assists female footballers.  相似文献   

18.
Lower to upper extremity sequencing of energy and force is linked by virtue of the scapula. It was the purpose of this study to examine the relationship between passive hip rotational range of motion and scapular kinematics during baseball pitching. Nineteen youth baseball players (11.3 ± 0.6 years; 151.8 ± 8.8 cm; 45.9 ± 10.9 kg) with no history of injury participated. Bilateral hip passive rotational range of motion was measured pre and post pitching a simulated game. Scapular kinematics at the position of shoulder maximum external rotation during the pitching cycle were recorded in the first and last innings of the simulated game. Post simulated game, stance leg hip passive internal rotation revealed significant correlations (r = ?0.57, = 0.01) with scapula anterior/posterior tilt at the pitching event of maximum humeral external rotation. The current study reveals that pitching a simulated game results in alterations throughout the kinetic chain. Specifically, this study strengthens the notion that lumbopelvic-hip complex parameters play a significant role in shoulder motion. With this link identified, it is suggested that clinical focus be directed musculature about the lumbopelvic-hip complex as well as muscles that work to stabilise the scapula during dynamic movement.  相似文献   

19.
The aim of the present study was to determine which approach to calculating shoulder ratios is the most sensitive for determining shoulder torque imbalance in handball players. Twenty-six participants (handball athletes, n = 13; healthy controls, n = 13) performed isokinetic concentric and eccentric shoulder internal rotation (IR) and external rotation (ER) assessment at 60, 180 and 300°/s. We used eight approaches to calculating shoulder ratios: four concentric (i.e. concentric ER torque divided by concentric IR torque), and four functional (i.e. eccentric ER torque divided by concentric IR torque) at the velocities of 60, 180 and 300°/s for both IR and ER, and combining 60°/s of ER and 300°/s of IR. A three factorial ANOVA (factors: shoulder ratios, upper limb sides, and groups) along with Tukey’s post-hoc analysis, and effect sizes were calculated. The findings suggested the functional shoulder ratio combining 60°/s of ER and 300°/s of IR is the most sensitive to detect differences between upper limbs for handball players, and between players and controls for the dominant side. The functional shoulder ratio combining 60°/s of ER with 300°/s of IR seems to present advantages over the other approaches for identifying upper limb asymmetries and differences in shoulder torque balance related to throwing.  相似文献   

20.
采用德国IsoMed 2000等速肌力测试仪,对17名健将(健将组)和18名一级(一级组)男子举重运动员进行双侧髋、膝和踝关节60°/s、120°/s、180°/s和240°/s向心、离心(每种角速度5次)测试。探讨优秀男子举重运动员下肢关节不同角速度等速肌力的特征,比较健将与一级组间差异,对健将组下肢关节相对峰力矩与相对专项成绩进行Pearson相关分析,并建立抓、挺举与峰力矩多元线性回归方程。结果显示,优秀男子举重运动员的髋关节相对伸爆发力与相对抓举呈高度显著正相关,髋关节中速(120°/s)、膝踝关节相对伸爆发力与相对抓举呈中度显著正相关,而踝关节相对屈绝对力呈中度显著负相关;髋关节相对伸爆发力与相对挺举呈高度显著正相关,左膝(挺举弓步腿)相对中速(120°/s)、爆发力和踝关节相对爆发力与相对挺举呈中度显著正相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号