首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 444 毫秒
1.
ABSTRACT

The purpose of this study was to investigate the influence of shaft torque (torsional rigidity) on clubhead kinematics and the resulting flight of the ball. Two driver shafts with disparate levels of torque, but otherwise very similar properties, were tested by 40 right-handed golfers representing a range of abilities. Shaft deflection data as well as grip and clubhead kinematics were collected from 14 swings, with each shaft, for each golfer using an optical motion capture system. Ball flight and additional clubhead kinematics were collected using a Doppler radar launch monitor. At impact, the high torque shaft (HT) was associated with increased delivered loft (P = .028) and a more open face (P < .001) relative to the low torque shaft (LT). This resulted in the HT shaft being associated with a ball finishing position that was further right (P = .002). At the individual level, the change in face angle due solely to shaft deformation was significantly higher for the HT shaft for 25/40 participants. Although shaft twist was not directly measured, it was logically deduced using the collected data that these outcomes were the result of the HT being twisted more open relative to the LT shaft at impact.  相似文献   

2.
Abstract

Previous studies on the kinematics of the golf swing have mainly focused on group analysis of male golfers of a wide ability range. In the present study, we investigated gross body kinematics using a novel method of analysis for golf research for a group of low handicap female golfers to provide an understanding of their swing mechanics in relation to performance. Data were collected for the drive swings of 16 golfers using a 12-camera three-dimensional motion capture system and a stereoscopic launch monitor. Analysis of covariance identified three covariates (increased pelvis–thorax differential at the top of the backswing, increased pelvis translation during the backswing, and a decrease in absolute backswing time) as determinants of the variance in clubhead speed (adjusted r 2 = 0.965, P < 0.05). A significant correlation was found between left-hand grip strength and clubhead speed (r = 0.54, P < 0.05) and between handicap and clubhead speed (r = ?0.612, P < 0.05). Flexibility measures showed some correlation with clubhead speed; both sitting flexibility tests gave positive correlations (clockwise: r = 0.522, P < 0.05; counterclockwise: r = 0.711, P < 0.01). The results suggest that there is no common driver swing technique for optimal performance in low handicap female golfers, and therefore consideration should be given to individual swing characteristics in future studies.  相似文献   

3.
Understanding the role of shaft stiffness in the golf swing   总被引:3,自引:3,他引:0  
Theoretically, shaft stiffness can alter shot distance by increasing clubhead speed or altering clubhead orientation at impact. A 3D forward dynamics model of a golfer and flexible club simulated the downswing. A genetic algorithm optimized the coordination of the model’s muscles (four torque generators) to maximize clubhead speed. The maximum torque output and maximum rate of torque development from the torque generators were varied to simulate the swing of golfers that generate different clubhead speeds. Four shafts of varying stiffness (flexible, regular, stiff, and completely rigid) were entered into these simulations to examine the role that shaft flexibility had on clubhead speed and orientation at impact. Shaft stiffness was found to have a meaningful effect only on clubhead orientation (dynamic loft and dynamic close) at impact. There was no evidence to support the premise that matching the stiffness properties of the shaft with the golfer would improve clubhead speed.  相似文献   

4.
It is unknown whether skilled golfers will modify their kinematics when using drivers of different shaft properties. This study aimed to firstly determine if golf swing kinematics and swing parameters and related launch conditions differed when using modified drivers, then secondly, determine which kinematics were associated with clubhead speed. Twenty high level amateur male golfers (M ± SD: handicap = 1.9 ± 1.9 score) had their three-dimensional (3D) trunk and wrist kinematics collected for two driver trials. Swing parameters and related launch conditions were collected using a launch monitor. A one-way repeated measures ANOVA revealed significant (p ≤ 0.003) between driver differences; specifically, faster trunk axial rotation velocity and an early wrist release for the low kick point driver. Launch angle was shown to be 2° lower for the high kick point driver. Regression models for both drivers explained a significant amount of variance (60–67%) in clubhead speed. Wrist kinematics were most associated with clubhead speed, indicating the importance of the wrists in producing clubhead speed regardless of driver shaft properties.  相似文献   

5.
The deflection of rowing oar shafts subjected to a static load was investigated. Two sets of sculling oars of different design stiffness were tested at three different lengths from 2.66 to 2.70 m. Loads up to 201 N were applied to the blade end of the oar shafts, and deflections were measured at six positions along the length of the shafts. The experimental results were compared with theoretical predictions obtained by modelling the oar shafts as homogenous end-loaded cantilever beams. The results show that the oar shafts are not uniform, in contradiction to the assumed model, but rather are most compliant near the sleeves and up to 80% stiffer towards the blades. The effect of oar shaft stiffness and length on the deflection angle at the blade end of the oar shaft was at most 1.18 ± 0.01°. The measured variation of stiffness along the shaft has implications for boat propulsion and rowing performance.  相似文献   

6.
The aim of this study was to determine how shaft length affects golf driving performance. A range of drivers with lengths between 1.168 m and 1.270 m, representing lengths close to the 1.219 m limit imposed by R&;A Rules Limited (2008 R&;A Rules Limited. 2008. Rules of golf, St. Andrews: R&;A Rules Limited, The Royal and Ancient Golf Club of St. Andrews.  [Google Scholar]), were assembled and evaluated. Clubhead and ball launch conditions and drive distance and accuracy were determined for seven category 1 golfers (handicaps 0.21 ± 2.41) who performed shots on a purpose-built practice hole. As shaft length increased from 1.168 m to 1.270 m, initial ball velocity increased (+1.8 m/s, P < 0.01). Ball carry (+4.3 m, P = 0.152) also increased, although not significantly so. Furthermore, as shaft length increased, for all club comparisons there was no decrease in accuracy. Ball launch conditions of spin components and launch angle remained unaffected by shaft length. Launch angle increased (0.8°, F = 1.074, P = 0.362) as driver shaft length increased. Our results show that clubhead and ball velocity together with ball carry tended to increase with no loss of accuracy.  相似文献   

7.
This study aimed to investigate the fatigue effects induced by a futsal-specific protocol (FIRP) on sprint performance and the kinematics of the lower limbs. Twenty-one futsal players participated in this study and performed a protocol to simulate the futsal demands. At pre-protocol, half-time and post-protocol, the athletes performed 10-m sprints that were recorded for kinematic analysis. Continuous relative phase (CRP) was calculated to assess the inter-segmental coordination. In addition, vertical (KVERT) and leg (KLEG) stiffness were calculated. Analysis of variance (ANOVA) for repeated measures was used (P < 0.05). The main results showed that sprint time increased (P < 0.01) post-protocol when compared to pre- and half-time conditions. Lower values of the step rate (P = 0.01) and higher values of the leg angular velocity (P = 0.02) were verified at the end of the FIRP. The CRP of thigh–leg and leg–foot and the stiffness did not change over the protocol. In addition, the high correlation of CRP between the conditions revealed no changes in coordination pattern. We concluded that futsal related-fatigue induced a decrement on sprint time, changing the kinematics of the lower limbs (decreasing step rate and increasing leg angular velocity). However, neither stiffness nor intersegment coordination during sprints was affected by fatigue.  相似文献   

8.
The use of multi-segment trunk models to investigate the crunch factor in golf may be warranted. The first aim of the study was to investigate the relationship between the trunk and lower trunk for crunch factor-related variables (trunk lateral bending and trunk axial rotation velocity). The second aim was to determine the level of association between crunch factor-related variables with swing (clubhead velocity) and launch (launch angle). Thirty-five high-level amateur male golfers (Mean ± SD: age = 23.8 ± 2.1 years, registered golfing handicap = 5 ± 1.9) without low back pain had kinematic data collected from their golf swing using a 10-camera motion analysis system operating at 500 Hz. Clubhead velocity and launch angle were collected using a validated real-time launch monitor. A positive relationship was found between the trunk and lower trunk for axial rotation velocity (r(35) = .47, < .01). Cross-correlation analysis revealed a strong coupling relationship for the crunch factor (R2 = 0.98) between the trunk and lower trunk. Using generalised linear model analysis, it was evident that faster clubhead velocities and lower launch angles of the golf ball were related to reduced lateral bending of the lower trunk.  相似文献   

9.
Abstract

The aim of this study was to assess a 12-min self-paced walking test in patients with McArdle disease. Twenty patients (44.7 ±11 years; 11 female) performed the walking test where walking speed, distance walked, heart rate (HR) and perceived muscle pain (Borg CR10 scale) were measured. Median (interquartile range) distance walked was 890 m (470–935). From 1 to 6 min, median walking speed decreased (from 75.0 to 71.4 m?min–1) while muscle pain and %HR reserve increased (from 0.3 to 3.0 and 37% to 48%, respectively). From 7 to 12 min, walking speed increased to 74.2 m?min–1, muscle pain decreased to 1.6 and %HR reserve remained between 45% and 48%. To make relative comparisons, HR and muscle pain were divided by walking speed and expressed as ratios. These ratios rose significantly between 1 and 6 min (HR:walking speed P = .001 and pain:walking speed < .001) and similarly decreased between 6 and 11 min (P = .002 and P = .001, respectively). Peak ratios of HR:walking speed and pain:walking speed were inversely correlated to distance walked: rs (HR) = ?.82 (P < .0001) and rs (pain) = ?.55 (P = .012). Largest peak ratios were found in patients who walked < 650 m. A 12-min walking test can be used to assess exercise capacity and detect the second wind in McArdle disease.  相似文献   

10.
We determined if performance and mechanical running alterations during repeated treadmill sprinting differ between severely hot and hypoxic environments. Six male recreational sportsmen (team- and racket-sport background) performed five 5-s sprints with 25-s recovery on an instrumented treadmill, allowing the continuous (step-by-step) measurement of running kinetics/kinematics and spring-mass characteristics. These were randomly conducted in control (CON; 25°C/45% RH, inspired fraction of oxygen = 20.9%), hot (HOT; 38°C/21% RH, inspired fraction of oxygen = 20.9%; end-exercise core temperature: ~38.6°C) and normobaric hypoxic (HYP, 25°C/45% RH, inspired fraction of oxygen = 13.3%/simulated altitude of ~3600 m; end-exercise pulse oxygen saturation: ~84%) environments. Running distance was lower (P < 0.05) in HOT compared to CON and HYP for the first sprint but larger (P < 0.05) sprint decrement score occurred in HYP versus HOT and CON. Compared to CON, the cumulated distance covered over the five sprints was lower (P < 0.01) in HYP but not in HOT. Irrespective of the environmental condition, significant changes occurred from the first to the fifth sprint repetitions (all three conditions compounded) in selected running kinetics (mean horizontal forces, P < 0.01) or kinematics (contact and swing times, both P < 0.001; step frequency, P < 0.001) and spring-mass characteristics (vertical stiffness, P < 0.001; leg stiffness, P < 0.01). No significant interaction between sprint number and condition was found for any mechanical data. Preliminary evidence indicates that repeated-sprint ability is more impaired in hypoxia than in a hot environment, when compared to a control condition. However, as sprints are repeated, mechanical alterations appear not to be exacerbated in severe (heat, hypoxia) environmental conditions.  相似文献   

11.
???The current study examined the influence of social identity for individual perceptions of self-worth, commitment, and effort in school-based youth athletes. Using a prospective research design, 303 athletes (Mage = 14.89, SD = 1.77; 133 female) from 27 sport teams completed questionnaires at 2 time points (T1 – demographics, social identity; T2 – self-worth, commitment, effort) during an athletic season. Multilevel analyses indicated that at the individual level, the social identity dimension of in-group ties (IGT) predicted commitment (= 0.12, P = .006) and perceived effort (= 0.14, P = .008), whereas in-group affect (IGA) predicted commitment (= 0.25, P = .001) and self-worth (= 2.62, P = .006). At the team level, means for IGT predicted commitment (= 0.31, P < .001) and self-worth (= 4.76, P = .024). Overall, social identity accounted for variance at both levels, ranging from 4% (self-worth) to 15% (commitment). Identifying with a group to a greater extent was found to predict athlete perceptions of self-worth, commitment, and effort. More specifically, at the individual level, IGT predicted commitment and effort, and IGA predicted commitment and self-worth. At the team level, IGT predicted commitment and self-worth.  相似文献   

12.
The aim of this study was to quantify and explain the effect of shaft stiffness on the dynamics of golf drives. Twenty golfers performed swings with two clubs designed to differ only in shaft bending stiffness. Wrist kinematics and clubhead presentation to the ball were determined using optical motion capture systems in conjunction with a radar device for capturing ball speed, launch angle, and spin. Shaft stiffness had a marginally small effect on clubhead and ball speeds, which increased by 0.45% (p < 0.001) and 0.7% (p = 0.008), respectively, for the less stiff club. Two factors directly contributed to these increases: (i) a faster recovery of the lower flex shaft from lag to lead bending just before impact (p < 0.001); and (ii) an increase of 0.4% in angular velocity of the grip of the lower flex club at impact (p = 0.003). Unsurprisingly, decreases in shaft stiffness led to more shaft bending at the transition from backswing to downswing (p < 0.001). Contrary to previous research, lead bending at impact marginally increased for the stiffer shaft (p = 0.003). Overall, and taking effect sizes into account, the changes in shaft stiffness in isolation did not have a meaningful effect on the measured parameters, for the type of shaft investigated.  相似文献   

13.
The aims of this study were (i) to determine whether significant three-dimensional (3D) trunk kinematic differences existed between a driver and a five-iron during a golf swing; and (ii) to determine the anthropometric, physiological, and trunk kinematic variables associated with clubhead speed. Trunk range of motion and golf swing kinematic data were collected from 15 low-handicap male golfers (handicap = 2.5 ± 1.9). Data were collected using a 10-camera motion capture system operating at 250 Hz. Data on clubhead speed and ball velocity were collected using a real-time launch monitor. Paired t-tests revealed nine significant (p ≤ 0.0019) between-club differences for golf swing kinematics, namely trunk and lower trunk flexion/extension and lower trunk axial rotation. Multiple regression analyses explained 33.7–66.7% of the variance in clubhead speed for the driver and five-iron, respectively, with both trunk and lower trunk variables showing associations with clubhead speed. Future studies should consider the role of the upper limbs and modifiable features of the golf club in developing clubhead speed for the driver in particular.  相似文献   

14.
Whilst previous research has highlighted significant relationships between golfers’ clubhead velocity (CHV) and their vertical jump height and maximum strength, these field-based protocols were unable to measure the actual vertical ground reaction force (vGRF) variables that may correlate to performance. The aim of this study was to investigate relationships between isometric mid-thigh pull (IMTP), countermovement jump (CMJ), squat jump (SJ) and drop jump (DJ) vGRF variables and CHV in highly skilled golfers. Twenty-seven male category 1 golfers performed IMTP, CMJ, SJ and DJ on a dual force platform. The vertical jumps were used to measure positive impulse during different stretch-shortening cycle velocities, with the IMTP assessing peak force (PF) and rate of force development (RFD). Clubhead velocity was measured using a TrackMan launch monitor at a golf driving range. Pearsons correlation coefficient analyses revealed significant relationships between peak CHV and CMJ positive impulse (r = 0.788, < 0.001), SJ positive impulse (r = 0.692; < 0.001), DJ positive impulse (r = 0.561, < 0.01), PF (r = 0.482, < 0.01), RFD from 0–150 ms (r = 0.343, < 0.05) and RFD from 0–200 ms (r = 0.398, < 0.05). The findings from this investigation indicate strong relationships between vertical ground reaction force variables and clubhead velocity.  相似文献   

15.
The purpose of the study was to quantify the contributions of physical education, exergaming (active video games that also are a type of exercise), recess, lunch break and after-school time segments to children’s daily physical activity and sedentary behaviours. Participants were 138 second and third graders (71 girls) who attended 20-min recess and 75-min lunch time daily, 25-min regular physical education or exergaming-based classes being alternated daily. The after-school period was defined as 3:20–10:00pm. Physical activity was assessed via accelerometry and the dependent variables were children’s time spent in moderate-to-vigorous physical activity (MVPA), light physical activity and sedentary behaviour. Children’s percentages of time spent in MVPA (P < .001; except for the difference between exergaming and lunch break: P = .63), light physical activity (P < .001) and sedentary behaviour (P < .001) differed significantly across the time segments (i.e., physical education/exergaming, recess, lunch break and after-school). Additionally, children accumulated significantly more MVPA (t = 10.22, P < .001) but less light physical activity (t = ?3.17, P = .002) and sedentary behaviour (t = ?3.91, P < .001) in physical education than in exergaming. Overall, physical education was more effective in generating MVPA than other segments over the school day. The after-school segment holds potential as an avenue for promoting children’s MVPA, as this long period could be better utilised to organise structured physical activity.  相似文献   

16.
The potential relationship between physical activity and endogenous pain modulatory capacity remains unclear. Therefore, the aim of the current study was to compare the pain modulatory responses of athletes and non-athletes. Conditioned pain modulation (CPM) was assessed in 15 athletes and 15 non-athletes at rest. Participation was restricted to pain-free males between 18 and 40 years of age. To measure CPM capacity, a sequential CPM testing protocol was implemented, whereby a test stimulus (pressure pain threshold [PPT]) was presented before and immediately after a conditioning stimulus (4-min cold-pressor test). Pain intensity ratings were obtained at 15-s intervals throughout the cold-pressor task using a numerical rating scale. Athletes demonstrated higher baseline PPTs compared to non-athletes (P = .03). Athletes also gave lower mean (P < .001) and maximum (P < .001) pain intensity ratings in response to the conditioning stimulus. The conditioning stimulus had a stronger inhibitory effect on the test stimulus in athletes, showing enhanced CPM in athletes compared to non-athletes (P < .05). This finding of enhanced CPM in athletes helps clarify previous mixed findings. Potential implications for exercise performance and injury are discussed.  相似文献   

17.
Purpose: The purpose of this work is focused on the study of the effect that feedback has on competence valuation, perceived competence, autonomous motivation, vitality, and performance in a throwing task. Method: Thirty-five college students (26 men and 9 women), without previous experience in the task, participated in this study. The students were randomly assigned to three experimental conditions (positive, negative, and lack of feedback). Results: The results of this study point out that only those who received positive feedback before the handball throwing task, in contrast to those who received negative feedback or did not receive any feedback, showed increased levels of competence valuation (p < .05, Cliff’s delta effect size = ?.30), perceived competence (p < .001, Cliff’s delta effect size = ?.77), and autonomous motivation (p < .05, Cliff’s delta effect size = ?.48). This group also presented higher levels of perceived competence (p < .001, Cliff’s delta effect size = ?.84) and subjective vitality (p < .001, Cliff’s delta effect size = ?.80) than the group who received negative feedback after the throwing task. Those who received positive feedback also showed a higher throwing speed at the end of task than those who received negative feedback (p < 0.001, Cliff’s delta effect size = ?.71) or than those who did not receive any feedback (p < .05, Cliff’s delta effect size = ?.56). Conclusions: Competence valuation, perceived competence, autonomous motivation, subjective vitality, and throwing speed were favorably influenced by positive feedback. These results have important implications for the training style applied by coaches.  相似文献   

18.
Purpose: The purpose of this study was to compare the kicking performance of young soccer players in the U9 to U20 age groups. Method: Three hundred and sixty-six Brazilian players were evaluated on an official pitch using three-dimensional kinematics to measure (300 Hz) ball velocity (Vball), foot velocity (Vfoot), Vball/Vfoot ratio, last stride length, and distance between the support foot and the ball. Simultaneously, a two-dimensional procedure was also conducted to compute (60 Hz) the mean radial error, bivariate variable error, and accuracy. Possible age-related differences were assessed through one-way analysis of variance and magnitude-based inferences. Results: Ball velocity increased by 103% (p < .001, η2 = .39) from the U11 age group (48.54 ± 8.31 km/hr) to the U20 age group (98.74 ± 16.35 km/hr). Foot velocity presented a 59% increase (p < .001, η2 = .32) from the U11 age group (49.08 ± 5.16 km/hr) to U20 (78.24 ± 9.49 km/hr). This finding was due to improvement in the quality of foot–ball impact (Vball/Vfoot ratio) from U11 (0.99 ± 0.13 a.u.) to U20 (1.26 ± 0.11 a.u.; p < .001, η2 = .25). Parameters such as mean radial error and accuracy appeared to be impaired during the growth spurt (U13–U15). Last stride length was correlated, low to moderately high, with Vball in all age groups (r = .36–.79). Conclusions: In summary, we concluded that simple biomechanical parameters of kicking performance presented distinct development. These results suggest that different training strategies specific for each age group could be applied. We provide predictive equations to aid coaches in the long-term monitoring process to develop the kick in soccer or search for talented young players.  相似文献   

19.
Upper-body dynamic and isometric maximum strength are essential components for success in Brazilian jiu-jitsu (BJJ). This study was aimed at analysing strength parameters in the elbow flexor and extensor muscles of BJJ practitioners. Participants (n = 28) performed maximum isometric contractions of elbow flexors and extensors to determine peak torque (PT), rate of force development (RFD), and the torque–angle (T–A) relationship at elbow angles of 45°, 60°, 75°, 90°, 105°, and 120°. Additionally, concentric and eccentric PTs were measured at 1.04 rad·s-1. Student t-test and ANOVA were performed using α = 0.05. Elbow flexors were stronger isometrically (P < 0.001, ES = 1.23) but weaker concentrically (P < 0.05, ES = 0.54) than extensor muscles, possibly because of the extensive grip disputes and pushing of opponents in BJJ. The T–A relationship had an inverted “U”-shape. Torque differences across elbow angles were moderate (ES = 0.62) for the extensor and large (ES = 0.92) for the flexor muscles. Isometric torque was greatest for elbow angles of 105° and 75° and smallest for 45° and 120° for extensor and flexor muscles, respectively. Elbow flexors had a greater RFD than extensors, regardless of elbow angle. The present study provides comprehensive results for elbow muscle strength in BJJ practitioners.  相似文献   

20.
Abstract

The purpose of this study was to establish if vertical stiffness was greater in professional Australian rules footballers who sustained a lower limb skeletal muscle strain compared to those who did not, and to establish if a relationship between age, or training history, and vertical stiffness existed. Thirty-one participants underwent weekly rebound jump testing on a force platform over two seasons. Vertical stiffness was calculated for injured players and the uninjured cohort 1 and 3 weeks prior to sustaining an injury and at the end of preseason. Eighteen athletes were in the “uninjured” cohort and 13 in the “injured” cohort. No significant difference in vertical stiffness was observed between groups (P = 0.18 for absolute stiffness; P = 0.08 for stiffness relative to body mass), within groups (P = 0.83 and P = 0.88, respectively) or for a time*cohort interaction (P = 0.77 and P = 0.80, respectively). No relationship between age and vertical stiffness existed (r = ?0.06 for absolute and relative stiffness), or training history and vertical stiffness (r = ?0.01 and 0.00 for absolute and relative stiffness, respectively) existed. These results and others lend to suggest that vertical stiffness is not related to lower limb muscle strain injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号