首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was twofold: (1) to determine the barbell load that maximised the system power as well as the ankle, knee, and hip joint powers during the squat jump, and (2) to compare the system powers computed from two different methods: the centre of mass (COM) method and the barbell method. Seven male throwers were recruited in this study. The system power (COM method) and the ankle, knee, and hip joint powers were determined with the load incrementally set at 0%, 10%, 30%, 50%, 70%, and 90% of one repetition maximum. The largest system power was observed at the load of 30% (p < 0.008) while the largest ankle and knee powers were observed at 70% and 0% (p < 0.05). The barbell method overestimated the system power (p < 0.001) when compared to the COM method. It was concluded that the barbell method could influence load optimisation in squat jump. The optimal barbell load which maximised the system power did not maximise the ankle, knee, or hip power simultaneously.  相似文献   

2.
ABSTRACT

Wearable resistance training involves added load attached directly to the body during sporting movements. The effects of load position during running are not yet fully established. Therefore, the purpose of this research was to determine spatio-temporal and kinetic characteristics during submaximal running using upper, lower and whole-body wearable resistance (1–10% body mass (BM)). Twelve trained male runners completed eight 2-min treadmill running bouts at 3.9 m/s with and without wearable resistance. The first and last bouts were unloaded, while the middle 6 were randomised wearable resistance conditions: upper body (UB) 5% BM, lower body (LB) 1%, 3%, 5% BM and whole body (WB) 5%, 10% BM. Wearable resistance of 1–10% BM resulted in a significant increase in heart rate (5.40–8.84%), but minimal impact on spatio-temporal variables. Loads of 5% BM and greater caused changes in vertical stiffness, vertical and horizontal force, and impulse. Functional and effective propulsive force (2.95%, 2.88%) and impulse (3.40%, 3.38%) were significantly (p < 0.05) greater with LB5% than UB5%. Wearable resistance may be used to increase muscular kinetics during running without negatively impacting spatio-temporal variables. The application of these findings will vary depending on athlete goals. Future longitudinal studies are required to validate training contentions.  相似文献   

3.
Whilst previous research has highlighted significant relationships between golfers’ clubhead velocity (CHV) and their vertical jump height and maximum strength, these field-based protocols were unable to measure the actual vertical ground reaction force (vGRF) variables that may correlate to performance. The aim of this study was to investigate relationships between isometric mid-thigh pull (IMTP), countermovement jump (CMJ), squat jump (SJ) and drop jump (DJ) vGRF variables and CHV in highly skilled golfers. Twenty-seven male category 1 golfers performed IMTP, CMJ, SJ and DJ on a dual force platform. The vertical jumps were used to measure positive impulse during different stretch-shortening cycle velocities, with the IMTP assessing peak force (PF) and rate of force development (RFD). Clubhead velocity was measured using a TrackMan launch monitor at a golf driving range. Pearsons correlation coefficient analyses revealed significant relationships between peak CHV and CMJ positive impulse (r = 0.788, < 0.001), SJ positive impulse (r = 0.692; < 0.001), DJ positive impulse (r = 0.561, < 0.01), PF (r = 0.482, < 0.01), RFD from 0–150 ms (r = 0.343, < 0.05) and RFD from 0–200 ms (r = 0.398, < 0.05). The findings from this investigation indicate strong relationships between vertical ground reaction force variables and clubhead velocity.  相似文献   

4.
Examining a countermovement jump (CMJ) force-time curve related to net impulse might be useful in monitoring athletes' performance. This study aimed to investigate the reliability of alternative net impulse calculation and net impulse characteristics (height, width, rate of force development, shape factor, and proportion) and validate against the traditional calculation in the CMJ. Twelve participants performed the CMJ in two sessions (48 hours apart) for test–retest reliability. Twenty participants were involved for the validity assessment. Results indicated intra-class correlation coefficient (ICC) of ≥ 0.89 and coefficient of variation (CV) of ≤ 5.1% for all of the variables except for rate of force development (ICC = 0.78 and CV = 22.3%). The relationship between the criterion and alternative calculations was r = 1.00. While the difference between them was statistically significant (245.96 ± 63.83 vs. 247.14 ± 64.08 N s, p < 0.0001), the effect size was trivial and deemed practically minimal (d = 0.02). In conclusion, variability of rate of force development will pose a greater challenge in detecting performance changes. Also, the alternative calculation can be used practically in place of the traditional calculation to identify net impulse characteristics and monitor and study athletes' performance in greater depth.  相似文献   

5.
The purpose of this study was to examine the effects of external load on vertical ground reaction force, and linear and angular kinematics, during squats. Eight males aged 22.1?±?0.8 years performed maximal concentric squats using loads ranging from 7 to 70% of one-repetition maximum on a force plate while linear barbell velocity and the angular kinematics of the hip, knee and ankle were recorded. Maximum, average and angle-specific values were recorded. The ground reaction force ranged from 1.67?±?0.20 to 3.21?±?0.29 times body weight and increased significantly as external load increased (P?<?0.05). Bar linear velocity ranged from 0.54?±?0.11 to 2.50?±?0.50?m?·?s?1 and decreased significantly with increasing external load (P?<?0.05). Hip, knee and ankle angles at maximum ground reaction force were affected by external load (P?<?0.05). The force?–?barbell velocity curves were fitted using linear models with coefficients (r 2) ranging from 0.59 to 0.96. The results suggest that maximal force exertion during squat exercises is not achieved at the same position of the lower body as external load is increased. In contrast, joint velocity coordination does not change as load is increased. The force?–?velocity relationship was linear and independent from the set of data used for its determination.  相似文献   

6.
Countermovement jump (CMJ) height is an important parameter in physical performance. This study compared CMJ height measured using ChronoJump contact mat (CJ) and Myotest accelerometer (MT) systems with a force platform (FP). Thirty recreationally active adults (32.1 ± 10.4 years, 75.9 ± 12.0 kg, 173.2 ± 6.3 cm) completed a CMJ protocol where height was simultaneously recorded using the three systems. CJ and MT measures were strongly and significant correlated (r = 0.65, 0.66, respectively; p < 0.05) with FP. CJ-derived measures were not significantly different to FP measures (p > 0.05), yet MT-derived measures were significantly different from those obtained using the FP (p < 0.05). Systematic bias was observed between FP and the CJ and between FP and MT. This study demonstrates the validity of CJ and MT systems for the assessment of CMJ height. Systematic bias and between-device differences in measurement should be considered when interpreting and comparing data from these devices.  相似文献   

7.
One variation of vertical jump (VJ) training is resisted or weighted jump training, where wearable resistance (WR) enables jumping to be overloaded in a movement specific manner. A two-way analysis of variance with Bonferroni post hoc contrasts was used to determine the acute changes in VJ performance with differing load magnitudes and load placements. Kinematic and kinetic data were quantified using a force plate and contact mat. Twenty sport active subjects (age: 27.8?±?3.8 years; body mass (BM): 70.2?±?12.2?kg; height: 1.74?±?0.78?m) volunteered to participate in the study. Subjects performed the counter movement jump (CMJ), drop jump (DJ) and pogo jump (PJ) wearing no resistance, 3% or 6% BM affixed to the upper or lower body. The main finding in terms of the landing phase was that the effect of WR was non-significant (P?>?.05) on peak ground reaction force. With regard to the propulsive phase the main findings were that for both the CMJ and DJ, WR resulted in a significant (P?<?.05) decrease in jump height (CMJ: ?12% to ?17%, DJ: ?10% to ?14%); relative peak power (CMJ: ?8% to ?17%, DJ: ?7% to ?10%); and peak velocity (CMJ: ?4% to ?7%, DJ: ?3% to ?8%); while PJ reactive strength index was significantly reduced (?15% to ?21%) with all WR conditions. Consideration should be given to the inclusion of WR in sports where VJ’s are important components as it may provide a novel movement specific training stimulus.

Highlights

  • WR of 3 or 6 % BM provided a means to overload the subjects in this study resulting in decreased propulsive power and velocity that lead to a reduced jump height and landing force.

  • Specific strength exercises that closely mimic sporting performance are more likely to optimise transference, therefore WR with light loads of 3–6% body mass (BM)appear a suitable tool for movement specific overload training and maximising transference to sporting performance.

  • Practitioners can safely load their athletes with upper or lower body WR of 3–6% BM without fear of overloading the athletesover and above the landing forces they are typically accustomed too.

  • As a training stimulus it would seem the WR loading provides adequate overload and athletes should focus on velocity of movement to improve power output and jump height i.e. take-off velocity.

  相似文献   

8.
ABSTRACT

This study compared the effects of dictating load using individual (ILVP) or group (GLVP) load-velocity profiles on lower-body strength and power. Nineteen trained males (23.6 ± 3.7 years) completed a back squat one-repetition maximum (1-RM), load-velocity profiling (LVP), and countermovement (CMJ), static-squat (SSJ) and standing-broad (SBJ) jump tests before and after 6 weeks of resistance training. Participants were randomly assigned to an ILVP, or GLVP intervention with intra-session load dictated through real-time velocity monitoring and prediction of current relative performance using either the participant’s LVP (ILVP) or a LVP based on all participant data (GLVP). Training resulted in significant increases in back squat 1-RM for the ILVP and GLVP group (p < 0.01; 9.7% and 7.2%, respectively), with no group-by-time interaction identified between training groups (p = 0.06). All jump performance significantly increased for the ILVP group (p < 0.01; CMJ: 6.6%; SSJ: 4.6%; SBJ: 6.7%), with only CMJ and SSJ improving for the GLVP group (p < 0.05; 4.3%). Despite no significant group-by-time interaction across all variables, the ILVP intervention induced a greater magnitude of adaptation when compared to a GLVP approach. Additionally, an individualised approach may lead to greater positive transfer to power-based movements, specifically vertical and horizontal jumps.  相似文献   

9.
10.
Power is a fundamental component for many sporting activities; while the load that elicits peak power during different exercises and differences between sexes remains unclear. This study aims to determine the effect of sex and load on kinematic and kinetic variables during the mid-thigh clean pull. Men (n = 10) and women (n = 10) performed the mid-thigh clean pull at intensities of 40%, 60%, 80%, 100%, 120%, and 140% of one repetition maximum (1RM) power clean in a randomised and counter-balanced order, while assessing bar velocity, bar displacement, power, force, and impulse. Two-way analysis of variance revealed that men demonstrated significantly greater (p < 0.05) values for all variables across loads, excluding bar velocity. Men demonstrated significantly greater (p < 0.05) bar velocities with 40–80% 1RM; in contrast, women demonstrated significantly (p < 0.05) higher velocities with 120–140% 1RM. Irrespective of sex significantly greater (p < 0.05), system peak power, bar velocity, and displacement occurred with 40% 1RM. In contrast, peak force and impulse were significantly (p < 0.05) greater with 140% 1RM. When performing the mid-thigh clean pull, to maximise system power or bar velocity, lower loads (40–60% 1RM) are recommended. When training force production or impulse, higher loads (120–140% 1RM) are recommended, when using the mid-thigh clean pull.  相似文献   

11.
Abstract

Physiological responses and performance were examined during and after a simulated trampoline competition (STC). Fifteen elite trampoline gymnasts participated, of which eight completed two routines (EX1 and EX2) and a competition final (EX3). Trampoline-specific activities were quantified by video-analysis. Countermovement jump (CMJ) and 20 maximal trampoline jump (20-MTJ) performances were assessed. Heart rate (HR) and quadriceps muscle temperature (Tm) were recorded and venous blood was drawn. A total of 252 ± 16 jumps were performed during the STC. CMJ performance declined (< 0.05) by 3.8, 5.2 and 4.2% after EX1, EX2 and EX3, respectively, and was 4.8% lower (< 0.05) than baseline 24 h post-competition. 20-MTJ flight time was ~1% shorter (< 0.05) for jump 1–10 after EX2 and 24 h post STC. Tm increased (< 0.05) to ~39°C after the warm-up, but declined (< 0.05) 1.0 and 0.6ºC before EX2 and EX3, respectively. Peak HR was 95–97% HRmax during EX1-3. Peak blood lactate, plasma K+ and NH3 were 6.5 ± 0.5, 6.0 ± 0.2 mmol · l?1 and 92 ± 10 µmol · l?1, respectively. Plasma CK increased (< 0.05) by ~50 and 65% 0 and 24 h after STC. In conclusion, a trampoline gymnastic competition includes a high number of repeated explosive and energy demanding jumps, which impairs jump performance during and 24 h post-competition.  相似文献   

12.
Abstract

The purpose of this study was to compare one-repetition maximum (1-RM) and muscle activity in three chest-press exercises with different stability requirements (Smith machine, barbell, and dumbbells). Twelve healthy, resistance-trained males (age 22.7 ± 1.7 years, body mass 78.6 ± 7.6 kg, stature 1.80 ± 0.06 m) were tested for 1-RM of the three chest-press exercises in counterbalanced order with 3–5 days of rest between the exercises. One-repetition maximum and electromyographic activity of the pectoralis major, deltoid anterior, biceps, and triceps brachii were recorded in the exercises. The dumbbell load was 14% less than that for the Smith machine (P ≤ 0.001, effect size [ES] = 1.05) and 17% less than that for the barbell (P ≤ 0.001, ES = 1.11). The barbell load was ~3% higher than that for the Smith machine (P = 0.016, ES = 0.18). Electrical activity in the pectoralis major and anterior deltoid did not differ during the lifts. Electrical activity in the biceps brachii increased with stability requirements (i.e. Smith machine <barbell <dumbbells; P ≤ 0.005; ES = 0.57, 1.46, and 2.00, respectively), while triceps brachii activity was reduced using dumbbells versus barbell (P = 0.007, ES = 0.73) and dumbbells versus Smith machine (P = 0.003, ES = 0.62). In conclusion, high stability requirements in the chest press (dumbbells) result in similar (pectoralis major and anterior deltoid), lower (triceps brachii) or higher (biceps brachii) muscle activity. These findings have implications for athletic training and rehabilitation.  相似文献   

13.
This study examined the influence of differing volume load and intensity (%1 repetition maximum[%1RM]) resistance exercise workouts on session rating of perceived exertion (sRPE) countermovement jump (CMJ) performance and endocrine responses. Twelve participants performed a workout comprising four exercises (bench press, back squat, deadlift and prone bench pull) in randomised order as either power (POW); 3 sets × 6 repetitions at 45%1RM × 3 min inter-set rest, strength (ST); 3 sets × 3 repetitions at 90%1RM × 3 min inter-set rest, or hypertrophy (HYP); 3 sets × 10 repetitions at 70%1RM × 1 min inter-set rest in a randomised-crossover design. CMJ performance and endocrine responses were measured immediately pre-, post-, 12, 24, 48 and 72 h post-exercise. POW sRPE (3.0 ± 1.0) was lower than ST (4.5 ± 1.0) (P = 0.01), and both were lower than HYP (8.5 ± 1.0) (P = 0.01). Duration of CMJ decrement was longer (P ≤ 0.05) for HYP (72 h) compared to POW (12 h) and ST (24 h). Testosterone concentration was greater (P ≤ 0.05) immediately post-exercise in HYP compared to POW and ST. In conclusion, less inter-set rest, greater volume load and intensity (%1RM) may increase sRPE, duration of CMJ performance decrement and testosterone responses in resistance exercise.  相似文献   

14.
15.
A popular method to improve athletic performance and lower body power is to train with wearable resistance (WR), for example, weighted vests. However, it is currently unknown what training effect this loading method has on full-body explosive movements such as the power clean. The purpose of this study was to determine what effects WR equivalent to 12% body mass (BM) had on the power clean and countermovement jump (CMJ) performance. Sixteen male subjects (age: 23.2?±?2.7 years; BM: 90.5?±?10.3?kg) were randomly assigned to five weeks of traditional (TR) power clean training or training with 12% BM redistributed from the bar to the body using WR. Variables of interest included pre and post CMJ height, power clean one repetition maximum (1RM), peak ground reaction force, power output (PO), and several bar path kinematic variables across loads at 50%, 70%, and 90% of 1RM. The main findings were that WR training: (1) increased CMJ height (8.7%; ES?=?0.53) and 1RM power clean (4.2%; ES?=?0.2) as compared to the TR group (CMJ height?=??1.4%; 1RM power clean?=?1.8%); (2) increased PO across all 1RM loads (ES?=?0.33–0.62); (3) increased barbell velocity at 90% 1RM (3.5%; ES?=?0.74) as compared to the TR group (?4.3%); and (4) several bar path kinematic variables improved at 70% and 90% 1RM loads. WR power clean training with 12% BM can positively influence power clean ability and CMJ performance, as well as improve technique factors.  相似文献   

16.
The purpose of this investigation was to analyse the concurrent validity and reliability of an iPhone app (called: My Jump) for measuring vertical jump performance. Twenty recreationally active healthy men (age: 22.1 ± 3.6 years) completed five maximal countermovement jumps, which were evaluated using a force platform (time in the air method) and a specially designed iPhone app. My jump was developed to calculate the jump height from flight time using the high-speed video recording facility on the iPhone 5 s. Jump heights of the 100 jumps measured, for both devices, were compared using the intraclass correlation coefficient, Pearson product moment correlation coefficient (r), Cronbach’s alpha (α), coefficient of variation and Bland–Altman plots. There was almost perfect agreement between the force platform and My Jump for the countermovement jump height (intraclass correlation coefficient = 0.997, P < 0.001; Bland–Altman bias = 1.1 ± 0.5 cm, P < 0.001). In comparison with the force platform, My Jump showed good validity for the CMJ height (= 0.995, P < 0.001). The results of the present study showed that CMJ height can be easily, accurately and reliably evaluated using a specially developed iPhone 5 s app.  相似文献   

17.
For simplicity of biomechanical analyses, the weightlifting barbell is typically modelled as a rigid, non-deformable object. Most coaches and weightlifters, however, are aware of the elastic nature of the barbell, and its influence on the successful completion of lifting attempts. Variables such as velocity, work performed, and power output are indicators of the quality of performance during the snatch, clean, and related weightlifting pulling movements. The aim of this study was to establish whether differences exist in determining these biomechanical parameters when the centre of the barbell is analysed compared with each end of the barbell. Nine men performed three maximal-effort repetitions in the clean pull exercise at 85% of their self-reported single repetition maximum (1-RM) clean (90–155 kg) using a barbell instrumented for mechanical analysis. Results indicated that peak barbell speed was 5–30% (P < 0.05) lower for the centre of the barbell than the ends. Although differences (P < 0.05) in kinetic and potential energy were found between the centre and ends of the bar, differences between total work performed were small ( < 6%; P < 0.05) and no differences were observed for average power (P > 0.05). Although approximately the same work and power occur for the centre and ends of the barbell, they manifest as different kinematics as a result of the elastic nature of the equipment. The elastic characteristics should be considered when selecting instrumentation and variables for research involving barbells. Coaches should be aware of the elasticity of barbells, including selecting appropriate viewing angles as well as understanding how deformation may affect the ends of the barbell relative to the centre.  相似文献   

18.
The aim of this study was to investigate how the type of contact influences physiological, perceptual and locomotive load during a simulated rugby league match. Eleven male university rugby league players performed two trials of the rugby league movement simulation protocol for interchange forwards with a traditional soft tackle bag and a weighted tackle sled to replicate contact demands. The interchange forward-specific simulation was chosen given the contact frequency is higher for this group of players compared to whole match players. Locomotive rate, sprint speed, tackle intensity, heart rate (HR) and rating of perceived exertion were analysed during the first and second bouts that replicated two ~23 min on-field passages. Countermovement jump (CMJ) was measured before and immediately after each trial. More time was spent in heart rate zone between 91 and 100% HRpeak during the first (effect size ± 90% confidence interval: 0.44 ± 0.49) and second bouts (0.44 ± 0.43), and larger (0.6 ± 0.69) decrements in CMJ performance were observed during the sled trial (5.9, = 4.9%) compared to the bag trial (2.6, = 5.4%). Changing the type of contact during the match simulation subtly altered both the internal and external loads on participants. Using a standard tackle bag results in faster sprint speed to contact, but lower overall high-intensity running. Conversely, a heavier tackle object increases the internal load and results in greater lower limb neuromuscular fatigue as reflected by the decrease in CMJ performance.  相似文献   

19.
ABSTRACT

The aims of the present study were to provide an in-depth comparison of inter-limb asymmetry and determine how consistently asymmetry favours the same limb during different vertical jump tests. Eighteen elite female under-17 soccer players conducted unilateral squat jumps (SJ), countermovement jumps (CMJ) and drop jumps (DJ) on a portable force platform, with jump height, peak force, concentric impulse and peak power as common metrics across tests. For the magnitude of asymmetry, concentric impulse was significantly greater during the SJ test compared to CMJ (p = 0.019) and DJ (p = 0.003). No other significant differences in magnitude were present. For the direction of asymmetry, Kappa coefficients revealed fair to substantial levels of agreement between the SJ and CMJ (Kappa = 0.35 to 0.61) tests, but only slight to fair levels of agreement between the SJ and DJ (Kappa = ?0.26 to 0.18) and CMJ and DJ (Kappa = ?0.13 to 0.26) tests. These results highlight that the mean asymmetry value may be a poor indicator of true variability of between-limb differences in healthy athletes. The direction of asymmetry may provide a useful monitoring tool for practitioners in healthy athletes, when no obvious between-limb deficit exists.  相似文献   

20.
This study aimed to assess the validity and reliability of jump assessments using the MyJump2 application. Eleven junior athletes (15 ± 1.4 years) performed five countermovement (CMJ) and drop jumps (DJ) measured simultaneously by a force platform and MyJump2. Additionally, intra- and inter-day reliability was assessed over two sessions, 7 days apart. Extremely high agreement between MyJump2 and the force platform (intra-class correlation coefficient, ICC ≥ 0.99) and the intra- and inter-operator agreement (ICC = 0.98–0.99) confirmed the validity and reliability of MyJump2. Mean typical errors (coefficient of variation percentage, CV%) within the first and second sessions were 4.9% and 4.5% respectively for CMJs, and 8.0% to 11.8% for DJ outcomes. CMJ height held acceptable inter-day reliability (CV < 10%; ICC > 0.8), while DJ did not. Results supported MyJump2 to be a valid and reliable tool for assessing jumps; however, with variability in DJs in this cohort, appropriate caution should be taken if including in a junior assessment battery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号