首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《数学通报》2 0 0 1年 2月号数学问题1 3 0 0 :设 a,b,c,d∈R,且 a b c d=2 ,ab ac ad bc bd cd=- 83 ,求 b c d的最大值和最小值 .除了《数学通报》上已给出的一种解法之外 ,本文再给出这一问题的两种解法 .为此 ,我们先计算 a2 b2 c2 d2 =(a b c d) 2- 2 (ab ac ad bc bd cd) =2 2 - 2·(- 83 ) =2 83 .解法 1 ∵b c d=2 - a,b2 c2 d2 =2 83 - a2 .构造函数 f (t) =(t- b) 2 (t- c) 2 (t- d) 2 ,则f(t) =3 t2 - 2 (b c d) t (b2 c2 d2 )=3 t2 - 2 (2 - a) t (2 83 - a2 )≥ 0 ,∴Δ=4 (2 -…  相似文献   

2.
对于不等式的证明 ,课本着重介绍了比较法、综合法、分析法 .其实 ,构造二次函数f(x) =ax2 +bx +c(a>0 ) ,利用f(x) ≥ 0恒成立的充要条件Δ≤ 0和 f(x) >0恒成立的充要条件Δ<0来证明 ,也是一种行之有效的方法 .下面以新教材第二册 (上 )课本中的几个习题为例加以说明 .一、若 f(x) =ax2 +bx+c≥ 0 (a>0 ) ,则Δ =b2 -4ac≤ 0例 1 求证 :(ac +bd) 2 ≤ (a2 +b2 ) (c2 +d2 ) .证明 构造二次函数 f(x) =(a2 +b2 )x2 +2 (ac+bd)x +(c2 +d2 ) .当a ,b全为零时 ,不等式显然成立 .设a ,b不全为零 .∵a2 +b2 >0且 f(x) =(ax+c) 2 +(bx+d) 2 ≥ 0…  相似文献   

3.
<正>可以证明不定方程1000a+100b+10c+d=99(a+b+c+d)有唯一解:a=1、b=7、c=8、d=2.即有1782=(1+7+8+2)×99,猜想:1782是数字和乘以99变换下的黑洞数.命题1设A是一个正整数,把A的所有数字的和乘以99,得到B.我们把从A到B的过程叫作A的f变换,记作f(A)=B.对B继续作f变换,得到f(B)=C;对C继续作f变换,……,那么,A经过有限次f变  相似文献   

4.
学习导数应用 ,有以下两个简单结论 :( 1)若在 [a ,b]上f(x) =0 ,则f(x)是一个常数。( 2 )若在 (a ,b)上f(x) >0 ,则f(x)是一个严格上升的函数。许多教科书中都是利用微分中值定理来证明上述两个性质的 ,本文则给出这两个定理的不同证明方法。( 1)的证明 :(用反证法 )首先假设存在a≤a1 相似文献   

5.
公式(a+b+c)(a~2+b~2+c~2-ab-bc-ca)=a~3+b~3+c~3-3abc(以下记为公式)有不少应用。而公式本身的证明并不困难,运用整式乘法或因式分解就可予以证明,这是初中一年级学生就能接受的。如果在初中代数教学中,讲解整式乘法时就把它提出来,到因式分解时再次熟悉,后继内容的教学中不断应用,这对学生掌握知识,发展智能会有裨益的。一、公式的征明: 证一:将左边按a的降幂排列左边=[a+(b+c)][a~2-(b+c)a+(b~2+c~2-bc)] =a~3-(b+c)a~2+(b~2+c~2-bc)a+(b+a)a~2-(b+c)~2a+(b+c)(b~2-a~2-bc) =a~3+(b~2+c~2-bc-b~2-2bc-c~2)a+b~2+c~3 =a~3+b~3+c~2-3abc。证二、用因式分解右边=(a+b)~3-3ab(a+b)+c~3-3abc =(a+b)~3+c~3-3ab(a+b+c) =(a+b+c)~3-3c(a+b)(a+b+c)  相似文献   

6.
正观察近几年高考中有关导数的解答题,几乎题题涉及比较大小、极值或最大(小)值,在比较大小时常常需要构造函数,这时应注意3个原则.1齐次性原则例1已知函数f(x)=ex,x∈R.设ab,比较f(a)+f(b)2与f(b)-f(a)b-a的大小,并说明理由.(2013年陕西省数学高考理科试题)分析1记f(a)+f(b)2=j,f(b)-f(a)b-a=k,作差c=j-k=ea+eb2-eb-ea b-a=(b-a-2)eb+(b-a+2)ea2(b-a),这里b-a0.令z=(b-a-2)eb+(b-a+2)ea,要比较j与k的大小,只要比较分子z与0的大小.  相似文献   

7.
在证明等比性质时 ,巧妙地运用了设 k方法 ,收到了出奇制胜的效果 .设 k法的实质是借用 k为参数 ,建立已知与未知之间的联系 ,达到解题目的 .现列举实例 ,介绍 .一、用设 k法求值例 1  ( 1999年天津市初二数学竞赛试题 )已知a + b - cc =a - b + cb =- a + b + ca ,求( a + b) ( b + c) ( c + a)abc 的值 .解 :设 a + b - cc =a - b + cb =- a + b + ca =k,则 a + b =( k + 1) c, 1a + c=( k + 1) b, 2b + c =( k + 1) a, 3由 1+ 2 + 3,得 ( k - 1) ( a + b + c) =1,∴ k =1或 a + b + c =0 .当 k =1时 ,a + b =2 c,b + c =2 a,c+ a =2 b,…  相似文献   

8.
乘法分配律是有关乘法和加法的运算定律,是多位数乘法和有关简便运算的理论依据,也是中学代数中合并同类项提取公因式等知识的基础。但小学生在理解和掌握乘法分配律时有一定的困难,学生在运用乘法分配律进行简便计算时,常常会出现a×(b+c)=a×b+c、a×b+a×c=b×(a+c)、a×b+a=a×(b+0)等各种各样的错误。如何提高乘法分配律的教学效率,是广大一线教师迫切需要解决的燃眉之急。  相似文献   

9.
这是一堂关于函数表达式的习题课,教学对象是高一学生.问题:已知f(2x+1)=x2-2x,求f(x)与f(2x-1)的解析式.学生解法:设f(x)=ax2+bx+c(a≠0),则f(2x+1)=4ax2+(4a+2b)x+a+b+c=x2-2x.易得4a=1,4a+2b=-2,a+b+c=0,解得a=14,b=-32,c=54,所以f(x)=14x2-32x+54,f(2x-1)=x2-4x+3.师:为什么可以"设f(x)=ax2+bx+c(a≠0)"?生1:因为可以推测f(x)一定是二次函数.如果f(x)不是二次函数,则f(2x+1)的解析式也不会是二  相似文献   

10.
等比性质,就是如果a/b=c/d…=m/n,这里 b+d+…+n≠0,那么 (a+c+…+m)/(b+d+…+m)=a/b这个性质很有用,请看: 1.求值例1已知a/b=c/d=e/f=5/7,求(a-c+3e)/(b-d+3f)的值. 解因为a/b=c/d=e/f=5/7所以 a/b=(-c)/(-d)=(3e)/(3f)  相似文献   

11.
<正>随着课堂教学改革的不断深入,多数教师的课堂教学水平都有了很大提高,但还有少部分教师在课堂教学中存在各种各样的问题,下面结合案例谈点看法。一、教学定律不要死板教条,要灵活运用一个教师在教学"乘法结合律"时,学生掌握了定律后,教师出示填空题:(a×b)×c=___时,学生没有按教师的想法做,而写成了(a×b)×c=(b×c)×a时,教师当时反应是问下边的同学"对吗?"同学们也不知所措,教师好长时间才说"也对,以后大家在做题时,不要  相似文献   

12.
<正>一、函数的对称性定理1:若函数y=f(x)定义域为R,且满足条件:f(a+x)=f(b-x),则函数y=f(x)的图像关于直线x=(a+b)/2对称。定理2:若函数y=f(x)定义域为R,且满足条件:f(a+x)+f(b-x)=c(a,b,c为常数),则函数y=f(x)的图像关于点  相似文献   

13.
贵刊2000年第8期刊登了一篇文章《从一道竞赛题谈起》,原文对1999年12月第十四届江苏省初中数学竞赛的一道试题列举了五种解法,并进行初步的推广.笔者认为该题还有一种新的求解途径,并可以进行更一般性的推广.题目 已知a,b,c,d是四个不同的有理数,且(a c)(a d)=1,(b c)(b d)=1,那么(a c)(b c)的值是.解 作函数f(x)=(x c)(x d)-(x-a)(x-b)-1,1其次数低于2.由f(a)=f(b)=0且a≠b可知    f(x)≡0.2从而  f(-c)=0.即   (a c)(b c)=-1.评注1 将构造的函数1展开,有f(x)=(a b c d)x (cd-ab-1),根据恒等式2有a b c d=0,cd-ab=1.    …  相似文献   

14.
有关证明条件等式的代数题,是一类综合性比较强的题目,如果能让学生掌握其各种不同的证明方法,对于培养他们的逻辑思维能力和熟练的技能技巧都是大有益处的。下面介绍几种证明条件等式的常用方法。一、将已知条件直接代入欲证等式例1 已知:x=(a-b)/(a b),y=(b-c)/(b c), z=(c-a)/(c a) 求证:(1 x)(1 y)(1 z) =(1-x)(1-y)(1-z) 证明:∵(1 x)(1 y)(1 z) =(1 (a-b)/(a b))(1 (b-c)/(b c))(1 (c-a)/(c a)) =2a/(a b)·2b/(b c)·2c/(c a) (1-x)(1-y)(1-z) =(1-(a-b)/(a b))(1-(b-c)/(b c))(1-(c-a)/(c a)) =2b/(a b)·2c/(b c)·2a/(c a) ∴ (1 x)(1 y)(1 z)=(1-x)(1-y)(1-z) 二、通过已知条件之间的相互变换,得出求证式。例2.设x=by cz,y=cz ax,z=ax by 试证:(a 1)x=(b 1)y=(c 1)z  相似文献   

15.
文 [1 ]找到倍角三角形三边关系的系列表达式 :fn=0 ,其中 f1=a -b ,f2 =(a2 -b2 ) -bc ,f3 =(a2-b2 ) (a -b) -bc2 ,…本文得到 :定理 在△ABC中 ,∠A =n∠B ,BC =a ,CA=b ,AB =c,记Fn=Fn(a ,b,c) =(ac) n-1(b·sinAsinB-a) ,λ =a2-b2 c2 ,μ =ac,则Fn=b(C0 n-1λn -1-C1n -2 λn -3 μ2 C2 n -3 λn -5μ4-C3 n -4λn -7μ6 C4n -5λn -9μ8-… ) -aμn -1=0 . ( )证明 :由正弦定理 ,asinA=bsinB,∴Fn=(ac) n -1(b·sinAsinB -a) =(ac) n -1sinA· bsinB-asinA =0 .记t=cosB ,将sinA =sinnB展开 ,应用sin2 B =1 -t2 ,2t…  相似文献   

16.
这是一道常见的题目:已知a、b、c∈R~ ,且a b c=1,求证:1/a 1/b 1/b≥9(*).灵活利用不等式(*)及其证法,我们可以巧妙地解答与之相关的数学命题.证明1:因为a、b、c∈R~ ,a b c=1.所以1/a 1/b 1/c=(a b c)/a (a b c)/b (a b c)/c=3 (b/a a/b)  相似文献   

17.
在平方差公式 ( a b) ( a- b) =a2 - b2中 ,令 a b=M,a- b=N ,则 a=M N2 ,b=M- N2 ,且M· N=( M N2 ) 2 - ( M- N2 ) 2 . ( * )不妨称 ( * )为广义平方差公式 .此公式简单易记 ,操作简便 ,应用简捷 ,在解高考题、竞赛题及其它一些数学问题时有着广泛的应用 ,现撷取几题例说如下 .例 1  ( 1 996年高考题 )已知 a,b,c是实数 ,函数 f( x) =ax2 bx c,g( x) =ax b,当 - 1≤x≤ 1时 ,| f( x) |≤ 1 ,证明 :当 - 1≤x≤ 1时 ,| g( x) |≤ 2 .证明 由公式 ( * )可得x=x· 1 =( x 12 ) 2 - ( x- 12 ) 2 ,g( x) =ax b=a[( x 12 ) 2 …  相似文献   

18.
一、公式变形观念初学勾股定理时 ,可结合右图 ,要求学生牢记 a2 b2= c2。同时 ,更重要的是引导学生得出变形公式 ,可以列成如下表格 :勾股定理∠ C=90° a2 b2 =c2已知求变形公式a、b c c=a2 b2a、c b b=c2 - a2 =( c a) ( c- a)b、c a a=c2 - b2 =( c b) ( c- b)  如果教师没有把公式变形的观念点出来 ,学生往往只是用原公式解题 ,如已知直角三角形中斜边 c=2 5,直角边 a=2 4 ,求直角边 b。没有点出公式变形观念 ,学生会根据勾股定理导出 2 4 2 b2 =2 52 ,然后解出b= 7,点出了变形观念后 ,学生明确了解题目标 ,就能迅速选用变…  相似文献   

19.
关于a/b±c/d=N(a、b、c、d表示线段,N是常数)类型的几何命题,在现行教材中占有一定的份量。而教材并没有专门的章节对其证法进行阐述,致使学生对此类问题感到束手无策。其实,我们可将a/b±c/d=N类型的几何题转化为常见的诸如a′/b=c′/d一类的几何命题,然后用相似形等知识即可达到欲证的目的。为节省篇幅,本文仅给出命题的分析。例1 过(?)ABCD的顶点D作一直线,与边BC相交于M点,与边AB的延长线相交于N点,求证 BC/BM-AB/BN=1(图1)。课本p.233.14题) 分析:即证BC/BM=1 AB/BN=(BN AB)/BN=AN/BN 因BC=AD,所以只须证AD/BM=AN/BN这是显然  相似文献   

20.
今天,我和同学们一起学习了《乘法分配律》,乘法分配律用字母表示为(a+b)×c=a×c+b×c,这一定律学生运用起来总是不能得心应手,为了学生巧妙记忆和灵活掌握,我教给了学生一种巧妙的记法:"a"代表妈妈,"b"代表爸爸,"×"代  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号