首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using the National Research Council's inquiry continuum framework, we use a multiple-case study research design to investigate the teacher- and student-directedness of elementary preservice teachers’ planned and enacted science lessons and their pedagogical reasoning about science instruction during a semester-long science methods course. Our specific research questions were (1) What ideas do elementary preservice teachers bring to a science teaching methods course about the inquiry continuum? and (2) How do their ideas about the inquiry continuum change over the course of the semester through engaging in planning, enactment, and reflection upon science instruction? Participants’ course artifacts (journals, reflective teaching assignments, and lesson plan rationales), interviews, and field observations of their enacted science lessons served as data for this study. Findings show that although the preservice teachers began the semester defining inquiry as highly student-directed, their ideas and definitions broadened over the course of the semester to include and embrace more teacher-directed forms of inquiry. Their early science lessons were more student-directed but, as they encountered challenges engaging in inquiry-based instruction and increasingly emphasized students’ learning needs, they began to plan and enact lessons that were more teacher-directed. Teacher education programs need to explicitly emphasize these variations of inquiry as a core component of supporting preservice teachers’ learning to teach science as inquiry.  相似文献   

2.
This research examines factors influencing elementary science teacher learning as they participate in professional development with and enactment of educative curricula in comparison with learning following limited professional development and enactment of traditional curricula. Using a randomized cluster design (125 teachers and 2,694 students in 4th—5th grades) that met the What Works Clearinghouse standards without reservations, teacher learning was conceptualized using four outcomes. Data were analyzed using standard single-level multiple regression models and possible mediation models for the teacher outcomes were considered using piecewise multiple regression and path analytic approaches. Treatment group teachers experienced greater increases in content knowledge, views of science inquiry, beliefs about reform-based teaching, and teaching self-efficacy than comparison group teachers. The findings indicate that what teachers learn from the combination of professional development and teaching with educative curriculum varies according to what their knowledge and beliefs are on entering the experience. Surprisingly, high entry-level self-efficacy was associated not only with lower learning gains for the teachers, but also for their students. Finally, teachers' space science learning and that of their students are implicated as mediators of the positive effect of the professional development and educative curriculum enactment on teacher beliefs about reform science teaching. This work refines and extends a theoretical framework of teachers' participatory relationship with curricula.  相似文献   

3.
Recently, theorists have raised concerns that pedagogical content knowledge (PCK) has become “a stale metaphor” that disregards diversity and equity, offers little to help teachers address students’ misconceptions, and portrays knowledge as “in the head” versus in practice. We refute these notions using grounded theory to specify ways one 7th-grade science teacher enacted PCK to advance student learning. With the definition of PCK as knowledge at the intersection of content and teaching, we utilised a framework for science PCK to explore instructional decision-making. Interviews conducted over three years revealed specific ways the teacher enacted PCK by designing and delivering instruction built on each of the seven conceptual science PCK components. The teacher enacted PCK to plan and deliver instruction that was responsive, adaptive, and considerate of changing needs of students and the changing classroom landscape. She infused PCK into instructional decision-making, instructional interactions, and mentoring of a student teacher, modelling the translation of educational theory into practice and habits of mind necessary for expert teaching. This enactment actively refutes Settlage’s critiques, and depicts PCK as a vibrant and effective stance for teaching that enhances learning.  相似文献   

4.
The present study was designed to identify and characterize the major factors that influence entering science teacher candidates’ preferences for different types of instructional activities, and to analyze what these factors suggest about teacher candidates’ orientations towards science teaching. The study involved prospective teachers enrolled in the introductory science teaching course in an undergraduate science teacher preparation program. Our analysis was based on data collected using a teaching and learning beliefs questionnaire, together with structured interviews. Our results indicate that entering science teacher candidates have strong preferences for a few activity types. The most influential factors driving entering science teacher candidates’ selections were the potential of the instructional activities to motivate students, be relevant to students’ personal lives, result in transfer of skills to non‐science situations, actively involve students in goal‐directed learning, and implement curriculum that represents what students need to know. This set of influencing factors suggests that entering science teacher candidates’ orientations towards teaching are likely driven by one or more of these three central teaching goals: (1) motivating students, (2) developing science process skills, and (3) engaging students in structured science activities. These goals, and the associated beliefs about students, teaching, and learning, can be expected to favor the development or enactment of three major orientations towards teaching in this population of future science teachers: “motivating students,” “process,” and “activity‐driven.”  相似文献   

5.
Teacher practices are essential for supporting students in scientific inquiry practices, such as the construction of scientific explanations. In this study, we examine what instructional practices teachers engage in when they introduce scientific explanation and whether these practices influence students' ability to construct scientific explanations during a middle school chemistry unit. Thirteen teachers enacted a project‐based chemistry unit, How can I make new stuff from old stuff?, with 1197 seventh grade students. We videotaped each teacher's enactment of the focal lesson on scientific explanation and then coded the videotape for four different instructional practices: modeling scientific explanation, making the rationale of scientific explanation explicit, defining scientific explanation, and connecting scientific explanation to everyday explanation. Our results suggest that when teachers introduce scientific explanation, they vary in the practices they engage in as well as the quality of their use of these practices. We also found that teachers' use of instructional practices can influence student learning of scientific explanation and that the effect of these instructional practices depends on the context in terms of what other instructional practices the teacher uses. © 2007 Wiley Periodicals, Inc. J Res Sci Teach 45: 53–78, 2008  相似文献   

6.
Science education reforms worldwide call on teachers to engage students in investigative approaches to instruction, like inquiry. Studies of teacher self-reported enactment indicate that inquiry is used frequently in the classroom, suggesting a high level of proficiency with inquiry that would be amenable to inquiry reform. However, it is unclear whether the high frequency of self-report is based on sound knowledge inquiry. In the absence of sound knowledge, high rates of self-reported enactment would be suspect. We conducted a study to measure teachers’ knowledge of inquiry as it related to the known, high frequency of reported enactment. We developed a multidimensional survey instrument using US reform documents and administered it to 149 K–12 teachers at a national science teachers’ conference. The majority of the teachers surveyed did not report inquiry enactment based on well-structured knowledge of inquiry. Interviews with participants showed how teachers could readily map non-inquiry activities onto inquiry statements taken directly from reform documents. From these results we argue that teachers often believed they were enacting inquiry, when likely they were not. We further reason that teachers may struggle to interpret and enact inquiry-related requirements of science education reform and will need support distinguishing inquiry from non-inquiry practices.  相似文献   

7.
When students collaboratively design and build artifacts that require relevant understanding and application of science, many aspects of scientific literacy are developed. Design-based inquiry (DBI) is one such pedagogy that can serve these desired goals of science education well. Focusing on a Projectile Science curriculum previously found to be implemented with satisfactory fidelity, we investigate the many hidden challenges when using DBI with Grade 8 students from one school in Singapore. A case study method was used to analyze video recordings of DBI lessons conducted over 10 weeks, project presentations, and interviews to ascertain the opportunities for developing scientific literacy among participants. One critical factor that hindered learning was task selection by teachers, which emphasized generic scientific process skills over more important cognitive and epistemic learning goals. Teachers and students were also jointly engaged in forms of inquiry that underscored artifact completion over deeper conceptual and epistemic understanding of science. Our research surfaced two other confounding factors that undermined the curriculum; unanticipated teacher effects and the underestimation of the complexity of DBI and of inquiry science in general. Thus, even though motivated or experienced teachers can implement an inquiry science curriculum with good fidelity and enjoy school-wide support, these by themselves will not guarantee deep learning of scientific literacy in DBI. Recommendations are made for navigating the hands- and minds-on aspects of learning science that is an asset as well as inherent danger during DBI teaching.  相似文献   

8.
9.
Inquiry-based curricula are an essential tool for reforming science education yet the role of the teacher is often overlooked in terms of the impact of the curriculum on student achievement. Our research focuses on 22 teachers’ use of a year-long high school urban ecology curriculum and how teachers’ self-efficacy, instructional practices, curricular enactments and previous experience impacted student learning. Data sources included teacher belief surveys, teacher enactment surveys, a student multiple-choice assessment focused on defining and identifying science concepts and a student open-ended assessment focused on scientific inquiry. Results from the two hierarchical linear models indicate that there was significant variation between teachers in terms of student achievement. For the multiple-choice assessment, teachers who spent a larger percentage of time on group work and a smaller percentage of time lecturing had greater student learning. For the open-ended assessment, teachers who reported a higher frequency of students engaging in argument and sharing ideas had greater student learning while teachers who adapted the curriculum more had lower student learning. These results suggest the importance of supporting the active role of students in instruction, emphasising argumentation, and considering the types of adaptations teachers make to curriculum.  相似文献   

10.
Teacher practices are essential for supporting learners in scientific inquiry practices of framing research questions, designing and conducting investigations, collecting data, and drawing conclusions. This study examines instructional practices of two Grade 11 Physical Science teachers engaged in teaching practical investigations. Data were collected from video recordings of teachers?? enactment of pre-laboratory, laboratory and post-laboratory practical investigation lessons. Other data sources included video-based classroom observations, teacher and learner interviews, and artefacts, such as teacher handouts, supplemental materials and learner work. The results suggest that when teachers introduce practical investigations, they vary in the practices they engage in as well as the quality of their use of these practices. Implications for teacher practices of scientific inquiry are explored.  相似文献   

11.
This research investigated Grades 5 and 6 science workbooks for the degree to which they promote scientific inquiry abilities, opportunities that students had to acquire these abilities and the obstacles hindering students from implementing them. A document review technique and a constant comparative method were applied sequentially. A total of 58 instigative logs were scrutinized. Findings revealed that while the activities allowed students to use appropriate techniques and tools to collect and interpret data, and use their inquiry abilities related to implement investigation plans, they did not allow students real opportunities to formulate questions, plan for simple investigations, write conclusions, or communicate investigations. A total of 15 Grade 5 and 6 science teachers were asked to report their perceptions of the students’ role in implementing identified abilities. A one‐way analysis of variance revealed that there was a significant difference between students who individually implemented the inquiry abilities and students who were supported by the teacher or by other students. Obstacles that hindered students from implementing identified inquiry abilities included teachers’ intensive supports, students’ limited background or skills, and materials and instrument shortages. The study concluded with recommendations for policy, practice, and future research.  相似文献   

12.
The purpose of this study was to examine the effectiveness of traditional versus guided inquiry (with problem-solving process and cognitive function training) on high school chemistry knowledge, science process skills, scientific attitudes, and problem-solving competency. Two classes of students were recruited from three classes of Grade 11 students at one school in North-eastern Thailand. Using a split-plot design, students were assigned to an experimental (N = 34) and a control group (N = 31), and were administered (a) learning achievement tests (chemistry knowledge, science process skills, and scientific attitude), (b) a problem-solving competency test, and c) tests of cognitive functioning. The findings showed that students’ learning achievement and problem-solving competency in the guided inquiry group were significantly higher than in the traditional group. The effect of the new teaching method does not seem to stem solely from improvement in cognitive functioning. We attributed the improvement to greater flexibility in the amount of information provided by the teachers, more effortful processing by the students, and greater collaboration amongst the students.  相似文献   

13.
Tools are needed to track the elements of students’ successful engagement in inquiry. The McGill Strategic Demands of Inquiry Questionnaire (MSDIQ) is a 79-item, criterion-referenced, learner-focused questionnaire anchored in Sch?n’s model and related models of self-regulated learning. The MSDIQ addresses three phases of inquiry engagement—planning, enactment, reflection—perceived as important by teachers, parents, and students before or after inquiry participation. Internal consistency and validity evidence was obtained from 205 university students with different inquiry backgrounds: teacher education years 1 and 4, continuing teacher education, and honors psychology. Separate confirmatory factor analyses of planning, enactment, and reflection generated 14 intercorrelated factors congruent with definitions of inquiry instruction and supported the hypothesized structure underlying the MSDIQ as a reliable and valid instrument for measuring inquiry engagement and valuing its building blocks.  相似文献   

14.
Context-based science courses stimulate students to reconstruct the information presented by connecting to their prior knowledge and experiences. However, students need support. Formative assessments inform both teacher and students about students’ knowledge deficiencies and misconceptions and how students can be supported. Research on formative assessments suggests a positive impact on students’ science achievement, although its success depends on how the formative assessment is implemented in class. The aim of this study was to provide insights into the effects of formative assessments on achievement during a context-based chemistry course on lactic acid. In a classroom action research setting, a pre-test/post-test control group design with switching replications was applied. Student achievement was measured in two pre-tests, two post-tests and a retention test. Participants were Grade 9 students from one secondary school in the Netherlands. Repeated-measures analysis showed a significant effect of formative assessments on students’ achievement. During the implementation of the formative assessments, intriguing discussions emerged between students, between students and teacher, and between teachers. Adding formative assessments to context-based approaches reinforces their strength to meet with the current challenges of chemistry education. Formative assessments affect students’ achievement positively and stimulate feedback between students and teacher(s).  相似文献   

15.
Constructing explanations and participating in argumentative discourse are seen as essential practices of scientific inquiry. The objective of this study was to explore the elements and origins of pre-service secondary science teachers’ alternative conceptions of tidal phenomena based on the elements used in Toulmin’s Argument Model through qualitative research. The data were collected from three pre-service secondary school teachers (D.-K. University, Teachers’ Colleges, junior and senior) in the Republic of Korea using a variety of qualitative research methods. We present three pre-service teachers as examples of 20 pre-service teachers for determining each pre-service teacher whether the pattern of his/her responses to all of the questions investigating a given concept can be explained by the consistent use of components of argument. The results of this study showed “the model with the Earth’s center at rest” backing their warrants as an element of Toulmin’s Argument Model. As a result, science educators must explicitly address these presuppositions or implicit beliefs and must help the students form links between their everyday experiences and scientific knowledge. Therefore, educators must be aware of the influence of students’ presuppositions and must use acceptable scientific concepts (the center of mass of the Earth–Moon system) based on argumentation to guide their construction of scientific concepts.  相似文献   

16.
Studies have shown that there is a need for pedagogical content knowledge among science teachers. This study investigates two primary teachers and their objectives in choosing inquiry- and context-based instructional strategies as well as the relation between the choice of instructional strategies and the teachers’ knowledge about of students’ understanding and intended learning outcomes. Content representations created by the teachers and students’ experiences of the enacted teaching served as foundations for the teachers’ reflections during interviews. Data from the interviews were analyzed in terms of the intended, enacted, and experienced purposes of the teaching and, finally, as the relation between intended, enacted, and experienced purposes. Students’ experiences of the teaching were captured through a questionnaire, which was analyzed inductively, using content analysis. The results show that the teachers’ intended teaching objectives were that students would learn about water. During the enacted teaching, it seemed as if the inquiry process was in focus and this was also how many of the students experienced the objectives of the activities. There was a gap between the intended and experienced objectives. Hardly any relation was found between the teachers’ choice of instructional strategies and their knowledge about students’ understanding, with the exception that the teacher who also added drama wanted to support her students’ understanding of the states of water.  相似文献   

17.
We investigated how 2 different curricular scaffolds (context-specific vs. generic), teacher instructional practices, and the interaction between these 2 types of support influenced students' learning of science content and their ability to write scientific arguments to explain phenomena. The context-specific scaffolds provided students with hints about the task and what content knowledge to use in or incorporate into their writing. The generic scaffolds supported students in understanding a general framework (i.e., claim, evidence, and reasoning) regardless of the content area or task. This study focused on an 8-week middle school chemistry curriculum that was enacted by 6 teachers with 578 students during the 2004–2005 school year. Analyses of identical pre- and posttests as well as videotapes of teacher enactments revealed that the curricular scaffolds and teacher instructional practices were synergistic in that the effect of the written curricular scaffolds depended on the teacher's enactment of the curriculum. The context-specific curricular scaffolds were more successful in supporting students in writing scientific arguments to explain phenomena, but only when teachers' enactments provided explicit domain-general support for the claim, evidence, and reasoning framework, suggesting the importance of both types of support in successful learning environments.  相似文献   

18.
Preservice science teachers face numerous challenges in understanding and teaching science as inquiry. Over the course of their teacher education program, they are expected to move from veteran science students with little experience learning their discipline through inquiry instruction to beginning science teachers adept at implementing inquiry in their own classrooms. In this study, we used Aikenhead’s (Sci Educ 81: 217–238, 1997, Science Educ 85:180–188, 2001) notion of border crossing to describe this transition preservice teachers must make from science student to science teacher. We examined what one cohort of eight preservice secondary science teachers said, did, and wrote as they both conducted a two-part inquiry investigation and designed an inquiry lesson plan. We conducted two types of qualitative analyses. One, we drew from Costa (Sci Educ 79: 313–333, 1995) to group our preservice teacher participants into one of four types of potential science teachers. Two, we identified successes and struggles in preservice teachers’ attempts to negotiate the cultural border between veteran student and beginning teacher. In our implications, we argue that preservice teachers could benefit from explicit opportunities to navigate the border between learning and teaching science; such opportunities could deepen their conceptions of inquiry beyond those exclusively fashioned as either student or teacher.  相似文献   

19.
Adapted primary literature (APL) refers to an educational genre specifically designed to enable the use of research articles for learning biology in high school. The present investigation focuses on the paedagogical content knowledge (PCK) of four high‐school biology teachers who enacted an APL‐based curriculum in biotechnology. Using a constructivist qualitative research approach, we analysed those teachers' aims and beliefs, the instructional strategies they used during the enactment of the curriculum, as well as the outcomes of the enactment as perceived by the teachers and their students, and as reflected in the class observations. Some of the teachers' strategies applied during the enactment, such as the conversational model, were specifically designed for teaching APL‐based curricula. We found that the instructional strategies applied for the adapted articles were associated with cognitive and affective engagement, active learning, inquiry thinking, and understanding of the nature of science. Suitable teacher PCK promoted learning by inquiry in addition to learning on inquiry. Students' challenges were mainly linked to the comprehension of complex, multi‐stage, biotechnological processes and methods that are abundant throughout the curriculum and required the use of previous knowledge in new contexts. A complex interaction of factors, namely teachers' PCK, the APL genre, and the biotechnology content of the curriculum, shaped the instructional strategies of the new curriculum and the outcomes of its enactment  相似文献   

20.
This two‐year school‐wide initiative to improve teachers’ pedagogical skills in inquiry‐based science instruction using a constructivist sociocultural professional development model involved 30 elementary teachers from one school, three university faculty, and two central office content supervisors. Research was conducted for investigating the impact of the professional development activities on teachers’ practices, documenting changes in their philosophies, instruction, and the learning environment. This report includes teachers’ accounts of philosophical as well as instructional changes and how these changes shaped the learning environment. For the teachers in this study, examining their teaching practices in learner‐centered collaborative group settings encouraged them to critically analyze their instructional practices, challenging their preconceived ideas on inquiry‐based strategies. Additionally, other factors affecting teachers’ understanding and use of inquiry‐based strategies were highlighted, such as self‐efficacy beliefs, prior experiences as students in science classrooms, teacher preparation programs, and expectations due to federal, state, and local mandates. These factors were discussed and reconciled, as they constructed new understandings and adapted their strategies to become more student‐centered and inquiry‐based.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号