首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
不等式问题覆盖面广、综合性强 ,是当今各层次数学竞赛 (包括IMO)的热点和难点之一 ,而不等式问题的处理更以“多入口 ,方法巧”见长 .为了寻求规律 ,探索解题途径 ,笔者搜集了部分有关不等式问题试题 ,深入研究 ,发现许多问题都能采用柯西不等式加以简单地解决 .下面举例加以说明 .例 1 设a ,b ,c∈R+ ,求证 :ab+c+ bc+a +ca+b ≥ 32 . ( 1)( 196 3年莫斯科竞赛题 )证明 令A =a(b +c) +b(c +a) +c(a +b) =2 (ab +bc +ca) ,B =ab+c+ bc+a+ ca+b.由柯西不等式 ,有AB≥ (a+b +c) 2 ,根据基本不等式 ,有A ≤ 23(a+b +c) 2 .所以 ,B≥ 32 …  相似文献   

2.
人教版"不等式"里有一道习题:证明不等式"a2+b2+c2≥ab+bc+ca".证明过程如下:因为a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca,所以2a2+2b2+2c2≥2ab+2bc+2ca,即a2+b2+c2≥ab+bc+ca."a2+b2+c2≥ab+bc+ca"是一个很重要的不等式,有着广泛的应用.  相似文献   

3.
一、等式与不等式的转化例1若正数a,b满足ab=a+b+3,则ab的取值范围是______.分析为了求ab的取值范围,只要将原等式转化为不等式即可.解运用不等式a+b≥2ab姨,原等式可化为不等式.∵ab=a+b+3≥2ab姨+3,∴ab-2ab姨-3≥0.又ab姨>0,∴ab姨≥3,即ab≥9.例2已知不等式a2+b2+c2+4≤ab+3b+2c,求正整数a,b,c.分析本题所给的是不等式,而求的是a,b,c,故应将原不等式转化为3个等式,才能解决问题.解∵不等式的两边是整数,∴将a2+b2+c2+4≤ab+3b+2c配方得(a-b2)2+3(b2-1)2+(c-1)2≤0.则有a-b2=0,b2-1=0,c-1=0,∴原不等式有唯一的一组解a=1,b=2,c=1.二、常…  相似文献   

4.
<正>证明不等式的方法有很多,有基本不等式法、函数法等.本文从一个独特的视角,采用全新的方法来证明不等式,即数形结合法,透过不等式的表面发现其几何意义,构造相应的几何图形来阐述不等式,将抽象问题具体化,直观化.题目设a>0,b>0,证明不等式2ab/(a+b)≤(ab)(1/2)≤(a+b)/2≤((a(1/2)≤(a+b)/2≤((a2+b2+b2)/2)2)/2)(1/2),当且仅当a=b时等号成立.思路这是2017年苏州市的一道高考模  相似文献   

5.
基本不等式a2+b2≥2ab在不等式的证明中起重要作用,但有些不等式直接用它去证明比较困难,而应用该不等式的变形去证明却比较方便. 变形1a2+b2≥2ab a2+b2≥1/2(a+b)2. 例 1 已知 a,b,c∈R+,且a+b+c=5,a2+b2+c2=9,试证明:1≤a、b、c≤7/3. 证明:由已知 a+b=5-c,a2+b2≥9-c2,∵a2+b2≥1/2(a+b)2,∴9-c2≥1/2(5-c)2,∴3c2-10c+7≤0,∴1≤c≤7/3,同理1≤a≤7/3,1≤b≤7/3. 例2 设a,b∈R+,且a+b=1,求证:(a+1/2)2+(b+1/b)2≥25/2.  相似文献   

6.
先看下面的一个公式:设ai∈R,bi∈R+,i=1,2,…,n.则a21b1+a22b2+…+a2nbn≥(a1+a2+…+an)2b1+b2+…+bn.这个公式是由柯西不等式稍加变形后得到的,用它处理一类分式不等式问题十分方便.下面举例说明.例1已知a、b、c∈R+.求证:ab+c+bc+a+ca+b≥32.(第26届莫斯科数学奥林匹克)证明:ab+c+bc+a+ca+b=a2a(b+c)+b2b(c+a)+c2c(a+b)≥(a+b+c)22(ab+bc+ca)≥3(ab+bc+ca)2(ab+bc+ca)=32.例2设a、b、c∈R+,且abc=1.则1a3(b+c)+1b3(c+a)+1c3(a+b)≥32.(第26届IMO)证明:1a3(b+c)+1b3(c+a)+1c3(a+b)=a2b2c2a3(b+c)+a2b2c2b3(c+a)+a2b2c2c3(a+b)=b2c2a(b+…  相似文献   

7.
文 [1]在引言中谈到 :在江苏省吴县市召开的 1999年全国不等式研究学术会议上 ,中科院成都计算机应用研究所杨路教授应用通用软件 Bottema给出以下不等式的一个“机器证明”:设 a,b,c都是正数 ,则ab c bc a ca b>2 .文 [1]中通过构造长方体给出了一个证明 ,但证明还是较繁 .事实上 ,利用二元均值不等式就可以给出一个简洁的证明 .证明  ∵ a· b c≤a b c2 ,∴ ab c=aa· b c≥ aa b c2=2 aa b c,同理可得bc a≥ 2 ba b c,  ca b≥ 2 ca b c.注意到以上三式等号不同时成立 ,故ab c bc a ca b>2一个不等式的简…  相似文献   

8.
2013年浙江省高中数学竞赛的附加题是一道不等式证明题.题目设a、b、c∈R+,ab+bc+ca≥3.证明:a5+b5+c5+a3(b2+c2)+b3(c2+a2)+c3(a2+b2)≥9这道不等式题,证明的人口宽,方法多.下面先给出命题组提供的参考答案.证明原命题等价于证明  相似文献   

9.
代数不等式证明题,表面上看似简单,但不易找到证明途径.原因是:按惯用方法“出招”,往往不能奏效.证明这种类型的不等式,需要的不仅是有全面的基础知识和娴熟的基本方法,更要有智慧,有创造性思维.下面介绍4种破解这类不等式证明题的方法.一、缩元法例1已知a、b、c、d都是小于1的正数,试比较abcd与a+b+c+d+3的大小.思路先就问题的简单情形进行尝试、探索,首先比较ab与a+b-1的大小.∵a、b∈(0,1),∴ab-(a+b-1)=ab-a-b+1=(a-1)(b-1)>0,∴ab>a+b-1.又∵a、b、c∈(0,1),∴abc=(ab)c>ab+c-1>(a+b-1)+c-1,∴abc>a+b+c-2.又∵a、b、c、d∈(0,1),∴ab…  相似文献   

10.
贵刊 2 0 0 3年第 4期《轮换对称不等式的证明技巧》一文中例 8和例 1 0的证明犯了一个常识性错误 .为方便叙述 ,把原文摘录如下 :例 8 已知a ,b,c∈R+ ,求证 :ab+c+ba +c+ca +b≥ 32 .分析 :将常数 32 均匀分解到左式各项中 ,待证不等式等价于ab+c-12 +ba +c-12 +ca +b-12 ≥ 0 ,( )由a ,b ,c的对称性 ,不妨设a≥b≥c>0 ,则( )左边 =2a -b -c2 (b+c) +2b -a -c2 (a +c) +2c -a -b2 (a +b)≥2a -b -c+2b -a -c+2c-a -b2 (a +b) =0 .很明显 ,原作者在这里使用了放缩技巧 ,但当 2b-a -c<0时 ,放缩方向刚好相反 ,因而证明是错误的 .同样在…  相似文献   

11.
数学科《考试说明》要求学生:1理解不等式的性质及其证明;掌握简单不等式的解法;掌握分析法、综合法、比较法证明简单的不等式.2掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理及其应用.3理解不等式|a|-|b|≤|a+b|≤|a|+|b|.下面介绍高考不等式基础试题考点及解析.考点1 均值不等式定理简单应用例1 (1999年全国高考题)若正数a,b满足ab=a+b+3,则ab的取值范围是.解析:运用均值不等式求和的最小值或积的最大值时,必须具备三个条件:各数为正;和或积为定值;等号应能成立.解:由均值不等式定理得ab=a+b+3≥2ab+3.即(ab+1)(…  相似文献   

12.
第三届陈省身杯数学奥林匹克第6题: 已知实数a,b,c>1,且a+b+c =9,试证明:√ab+bc+ca≤√a+√b+√c. 贵刊2014年第12期文“对一道奥林匹克数学竞赛试题的证明及思考”中,把这个不等式加强为:正实数a,b,c≥k,且a+b+c=9,试证明:√ab+bc+ca≤√a+√b+√c该文验证了k=1/2的正确性,但是文末指出最小的k值如何求解呢?笔者试图找出最小的k值.  相似文献   

13.
不等式a~3+b~3+c~3≥3abc的证法及推广   总被引:1,自引:0,他引:1  
现行教材中三元基本不等式 :“若 a,b,c∈R+ ,则 a3+ b3+ c3≥ 3 abc,当且仅当 a =b =c时 ,等式成立 .”是用因式分解方法证明 ,但分解需要一定技巧 .笔者在教学中了解 ,学生除了欣赏很难掌握 .笔者从学生已有的知识出发 ,通过证明一般的情况 ,导出三元基本不等式的证明 .要证上述“若 a,b,c∈ R+ ,则 a3+ b3+ c3≥ 3 abc,不等式成立 .”学生已有的知识是 :若 a∈ R+ ,a≥ a成立 ,(a∈ R也成立 )若 a,b∈ R+ ,a2 + b2 =2 ab成立 ,当且仅当 a =b时 ,等式成立 .(a,b∈ R也成立 ) ,自然联想 :a,b,c,d∈ R+ ,a4 + b4 + c4 +d4≥ 4abcd是否成…  相似文献   

14.
《中学数学教学》2 0 0 2年第 6期有奖解题擂台( 5 8)中 ,杨先义老师提出如下猜想 :设a >0 ,b >0 ,c>0 ,a +b +c=1 ,则1b+c2 +1c +a2 +1a +b2 ≥2 74①ab +c2 +bc +a2 +ca +b2 ≥ 94②本文指出 ,猜想不等式①不成立 ,不等式②成立。在①式中 ,令a =0 6,b=0 3 6,c =0 0 4,得左边 =3 41 9455 1 5 2 8<2 74=右边 ;故不等式①不成立。下面证明不等式②成立 ,并修正①式。运用Cauchy不等式 ,得[a(b +c2 ) +b(c +a2 ) +c(a +b2 ) ]( ab+c2 +bc+a2 +ca +b2 )≥ (a +b +c) 2 =1 ,所以  ab +c2 +bc+a2 +ca +b2 ≥1ab +bc +ca +a2 b +b2 c+c2 a。…  相似文献   

15.
<正>近日,笔者发现了一个关于三角形边长的不等式链,现介绍如下.命题在△ABC中,a,b,c分别为其三边长,R,r分别为其外接圆和内切圆半径,则有a3+b3+c3≥(a+b+c)(ab+bc+ca)-6abc≥(4-2r/R)abc≥3abc.证明先证明a3+b3+c3≥(a+b+c)(ab+bc+ca)-6abc.  相似文献   

16.
1问题呈现设a,b,c为正实数,且a+b+c=3,求证:√ab/2a+b+c+√bc/2b+c+a+√ca/2c+a+b≤3/2.2问题的证明与推广证明:由已知条件结合均值不等式可得√ab/2a+b+c+√bc/2b+c+a+√ca/2c+a+b=√ab/3+a+√bc/3+b+√ca/3+c≤√ab/44√ a+√bc/44√ b+√ca/44√c=8√a3b4/2+8√b3c4/2+8√c3a4/2≤1+3a+4b/16+1+3b+4c/16+1+3c+4a/16=3+7 (a+b+c)/16=3+7×3/16=3/2,当且仅当a=b=c=1时取等号,则√ab/2a+b+c+√bc/2b+c+a+√ca/2c+a+b≤3/2.  相似文献   

17.
对于一类条件为a >1,b >1,c >1的分式不等式 ,可借助“拆项法”及平均值不等式 ,予以统一巧证 .拆项法 1 a =(a - 1) + 1.此时有a≥ 2 (a - 1)·1.例 1 设a >1,b >1,求证 :ab - 1+ ba - 1≥4 .证明  ab - 1+ ba - 1≥ 2 (a - 1)·1b - 1+ (b - 1)·1a - 1≥ 2·2 a - 1b - 1· b - 1a - 1=4 .意外收获 aa - 1+ bb - 1≥ 4 ;aa - 1+ bb - 1+ cc - 1≥ 6 ;ab - 1+ bc - 1+ ca - 1≥ 6 ;ac - 1+ ba - 1+ cb - 1≥ 6等 .细心推敲 ,还不难获得如下 :推论 1 若ai>1,i=1,2 ,3,… ,n ,n∈N ,则a1a2 - 1+ a2a3- 1+… + an- 1an- 1+ ana1- 1≥2n …  相似文献   

18.
放缩法证明不等式主要依据不等式的传递性.利用放缩法证明不等式的关键在于如何放缩,放缩度是放缩法的关键.下面就以以下几个例子,谈谈几种常规的放缩手段.一、添上(或去掉)某些项,从而达到放缩的目的:【例1】已知a,b,c,为非负实数,试证明:a2 ab b2 b2 bc c2≥a b c.证明:∵a2 ab b2=(a 2b)2 34b2≥a 2b①b2 bc c2=(c 2b)2 34b2≥c 2b②① ②得a2 ab b2 b2 bc c2≥a b c.得证.二、通过对分子,分母的放大或缩小从而达到放缩的目的:【例2】已知a,b,c,d∈R S=a ba d b cb a c cd b d da c,求证:11aa b d>a b ac dbb c a>a b …  相似文献   

19.
不等式的证明是中学数学的一个难点,分式不等式的证明更为困难.本文提供了利用均值不等式配对证明一类分式不等式的思路. 一、如果不等式是形如sum form n to i=1 Ai2/Bi≥M的形式,且Ai,Bi(i=1,2,…,n),M均为正数,则可对Ai2/Bi配上Bi·P,成对利用均值不等式和不等式的基本性质证明. 例1 设a,b,c∈R+,求证:a2/(b+c)+b2/(c+a)+c2/(a+b)≥(a+b+c)/2. 证明:由a2/(b+c)+(b+c)/4≥a,b2/(c+a)+(c+a)/4≥b,c2/(a+b)+(a+b)/4≥c.上面三式相加得求证不等式.  相似文献   

20.
1逆向思维的教材原型题与近年高考题 例1 (新课标选修4-5第25页习题 2.2第2题)已知a,b,c,∈R+,用综合法证: (ab+a+b+1)(ab+ac+bc+c2)≥16abc. 证明 (ab十a+b+1)(ab+ac+bc+c2)=(a+1) (b+1)(a+c) (b+c)≥2√a×2b×2√ac×2√bc=16abc. 例2 (2010年重庆文科第10题)若a,b,c>0,且a2+2ab+2ac+4bc=12,则ab+c的最小值是().  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号