首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
文[1]给出了如下定理: 定理1 若A,B分别是椭圆x2/a2+y2/b2=1(a>b>0)短轴(长轴)的两个端点,P为椭圆上任意一点(不与A,B重合),直线PA,PB交长轴(短轴)所在直线于C,D两点,则椭圆在点P处的切线平分线段CD.  相似文献   

2.
正文[1]研究了椭圆的一个性质,受文[1]启发,笔者通过探究发现,将文[1]定理1,定理2条件中椭圆的右顶点和上顶点A,B分别换成椭圆共轭直径的两个端点,结论仍然成立.性质1设A,B是椭圆x~2/a~2+y~2/b~2=1(ab0)上的两点,O是坐标原点,射线OA,OB的斜率的乘积为-b~2/a~2,点M是线段AB的中点,直线OM交椭圆于C,D两点,△ABC,△ABD的面积分别记为S_1,S_2,  相似文献   

3.
性质:已知椭圆方程为x2/a2 y2/b2=1(a>b>0),如图1,A1、A2是左右两顶点.O为坐标原点,B1、B2分别是椭圆上下两顶点,F为右焦点,Q为椭圆上任意一动点,则|QF|min=|FA2|(|QF|max=|FA1|,证明略),即椭圆上一动点到焦点F的最小距离为|FA2|.  相似文献   

4.
文(1)给出了椭圆切线的一个性质:设A、B分别是椭圆x2/a2+y2/b2=1(a>b>0),短轴(长轴)的两个端点,P为椭圆上的任一点(不与A、B重合),直线PA、PB交长轴(短轴)所在的直线于C、D,则椭圆在点P处的切线平分线段CD. 文(2)将此性质推广至双曲线,并将切线推广为割线,文(2)末还提出了一个猜想.本文证明这个猜想,并由这个猜想出发,进一步证明文(1)中的四个定理的更一般情形.  相似文献   

5.
《福建中学数学》2005年第9期文[1]给出了圆锥曲线的一个性质定理:定理1过椭圆x2/a2 y2/b2=1焦点弦AB的两端点A、B所作的两条切线的交点必在此焦点所对应的准线上.定理2过双曲线x2/a2?y2/b2=1焦点弦AB的两端点A、B所作的两条切线的交点必在此焦点所对应的准线上.定理3过抛物线y  相似文献   

6.
椭圆"类准线"上点的几个性质   总被引:1,自引:1,他引:0  
文[1]介绍了如下两个定理: 定理1 设A,B是椭圆x^2/a^2+y^2/b^2=1(a〉b〉0)的左右顶点,P是椭圆准线x=±a^2/c上的动点,∠APB=θ,椭圆离心率是e,则θ为锐角且sinθ≤e(当且仅当点P到椭圆长轴的距离为b/c时取等号).  相似文献   

7.
本文介绍椭圆和双曲线的一个垂直性质与应用,供读者参考. 定理1 经过椭圆x/a2+y/b2=1(a>b>0)准线和x轴的交点E且倾斜角为θ的直线与椭圆相交于A,B两点,O是椭圆中心,则OA上⊥OB的充要条件是sinθ=b/a√a2-b2/a2+b2.  相似文献   

8.
文[1]给出了椭圆及双曲线的一个有趣定值,并给出如下定理: 定理设l是椭圆x^2/a^2+y^2/b^2=1(a〉b〉0)的准线,A,B为椭圆的左、右顶点,E,F是椭圆的左右焦点,P是椭圆上异于A,B的任意一点,直线PA,PB交l于M,N两点,则EM^→·FN^→=2b^2(定值).[第一段]  相似文献   

9.
文[1】介绍了下列定理:定理1椭圆b^2x^2+a^2y^2=a^2b^2(a〉b〉0)上一定点A(x0,y0)(点A不是椭圆顶点)作两条直线分别交椭圆于E、F两点,  相似文献   

10.
受文献[1]的启发,本文给出圆锥曲线(椭圆、双曲线、抛物线)垂直于焦点所在对称轴的直线(简称“垂轴线”)的一个性质,并应用性质证明两组“姊妹”结论. 1 一组性质 性质1 已知椭圆Γ:x2/a2+y2/b2=1(a>b>0)与x轴交于A、B两点,直线l:x=m(| m |≠a)是垂直于x轴的一条定直线,P是椭圆Γ上异于A、B的任意一点,若直线PA交直线l于点M(m,y1),直线PB交直线l于点N(m,y2),则y1y2为定值b2/a2(a2-m2).  相似文献   

11.
笔者通过探究,得到圆锥曲线与切线有关的一个性质.性质1如图1,已知椭圆x2/a2+y2/b2=1(a>b>0),点A是椭圆在x轴上的一个顶点,S是椭圆上异于A的任一点,椭圆在S处的切线交x轴于点R,OS交椭圆在顶点A处的切线于点B,则SA//BR.  相似文献   

12.
笔者近期在研究圆锥曲线时,发现了椭圆的一个与面积比有关的性质,按发现过程,阐述如下:定理1 A,B分别是椭圆x~2/a~2+y~2/b~2=1(a〉b〉0)的右顶点和上顶点,点M为线段AB的中点.直线OM交椭圆于C,D两点(其中O为坐标原点).ΔABC与ΔABD的  相似文献   

13.
受姜老师的文[1]启发,对椭圆另一定值问题进行了研究,整理成文如下: 定理过椭圆x2/a2 y2/b2=1上点P(异于长轴端点)作倾斜角互补的两条直线,分别与椭圆交于A、B两点(异于P).求证直线AB的斜率为定值.  相似文献   

14.
文[1]给出了椭圆与双曲线如下一个有趣的性质.性质1给定椭圆C:x2/a2 y2/b2=1(a>b>0),A(?a,0)(或A(a,0))是长轴的左(或右)顶点,M(?a,m)(或M(a,m))(m≠0)是定直线L:x=?a(或x=a)上的一定点,过M引直线交C于点P、Q两点,则k AP kAQ为定值2b2/(am)(或?2b2/(am)).性质2给定双曲线C:x2/a  相似文献   

15.
文[1]给出了椭圆和双曲线的一个有趣的定值,笔者研究发现此类定值可以推广到一般情况,其结论如下: 定理1已知F1,F2是椭圆C:x^2/a^2+y^2/b^2=1(a〉b〉0)的左、右焦点,A,B是椭圆C的左右顶点,点P是椭圆C上的任意一点,直线PA,PB分别与直线l:x=m交于M,N两点,则F1M^→·F2N^→=m^2(c/a)^2+b^2-c^2.[第一段]  相似文献   

16.
文[1] 给出有关椭圆的两个性质 ,对于这两个性质本文给以引申和证明 .      图 1推论 1 如图1所示 ,椭圆b2 x2 +a2 y2 =a2 b2   (a>0 ,b>0 )过切点M的切线l与以椭圆长轴为直径的圆O从左至右依次交于A、B两点 ,则以线段MF1、MF2 为直径的圆与圆O分别内切于A、B两点 (其中F1、F2为双曲线的左右焦点 ) .证明 设M (acosθ ,bsinθ) ,F1(-c,0 ) ,F2 (c,0 ) ,由文 [1]定理 1证明 ,可知A(ab2 cosθ -a2 csin2 θa2 sin2 θ +b2 cos2 θ ,a2 bsinθ +abcsinθcosθa2 sin2 θ +b2 cos2 θ ) ,B(ab2 cosθ+a2 csin2 θa2 sin2 θ+b2…  相似文献   

17.
文[1]与文[2]给出了圆锥曲线的一个如下性质:性质1已知椭圆x~2/a~2+y~2/b~2=1(a>b>0),C,D是椭圆上x轴同侧的两点,A,B分别是椭圆的左右顶点,直线AC,BD交于点P,直线AD,BC交于点E,直线PE交x轴于点M,则PE⊥x轴,且PE平分∠CMD.性质2已知双曲线x~2/a~2-y~2/b~2=1(a>0,b>0),C,D是双曲线上x轴同侧的两点,A,B分别是双曲  相似文献   

18.
文[1]介绍了圆锥曲线中的一个优美性质,本文将文[1]中的相关结论进行推广.性质1如图1已知椭圆x2/a2+y2/b2=1(a>b>0),A,B分别是椭圆的左、  相似文献   

19.
正文[1]、文[2]分别介绍了椭圆、双曲线的如下性质:命题1设点P是椭圆x2/a2+y2/b2=1(a0,b0)上的任一点,  相似文献   

20.
文[1]讨论了椭圆中的一个比值问题,笔者认为文中的定理2应更正为:结论P(x_0,y_0)是椭圆(x~2)/(a~2) (y~2)/(b~2)=1(a>b>0)外的一个定点,过点P的直线与椭圆交于A,B两点,则P分(?)的比γ的取值范围是  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号