首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
三角形三条高相交于一点,这点称为三角形的垂心。由此可得:△ABC任意两条高线AD、BE相交于H,则CH⊥AB。运用这个性质,可巧妙地解决一些几何问题。例1 CD是Rt△ABC斜边上的高,∠BAC的平分线AE交CD于H,交∠BCD的平分线CF于G,求证:FH∥BC。本题一般的证明思路是利用三角形的内角平分线的性质定理,得出DH∶HC=DF∶FB,推出HF∥BC。如果本题采用垂心性质来解,则别有味道,不失巧妙。证明:由AC⊥BC、CD⊥AB,得∠CAD=∠DCB,又因为∠DAH=∠CAH,∠DCF=∠BCF,因此,∠DCF=∠DAH,又∠ADH=Rt∠,得∠A…  相似文献   

2.
在△ ABC中 ,∠ C=90°,CD⊥ AB于 D,AM是∠ BAC的平分线 ,交 CD于 E,交 BC于 M,过E作 EF∥ AB交 BC于 F。求证 :CM=BF。证法一 :(运用三角形知识 )证明 :过 M作 MN⊥ AB于点 N。∵∠ 1=∠ 2 ,易证△ ACM≌△ ANM,∴CM=MN。  ( 1)又 CD⊥ ABMN⊥ AB CD∥ MN, ∠ 3=∠ 5∠ 4 =∠ 5 ∠ 3=∠ 4 CE=CM。  ( 2 )由 ( 1)、( 2 )得 CE=MN。在 Rt△ EFC和 Rt△ NBM中 ,EF∥ AB ∠ B=∠ CFE,∠ CEF=∠ MNB,CE=MN Rt△ EFC≌ Rt△ NBM,∴ CF=BM,∴ CM=BF。  证法二 :(运用四边形知识 )证明 :过 M…  相似文献   

3.
李新卫 《考试》2014,(4):12-15
<正>与圆有关的问题能很好的反映平面几何的主体知识,是高考中平几部分的主考点。1.直径直径所对的圆周角为直角,直角圆周角所对的弦为直径。例1如图1,已知BC为半圆O的直径,AB=AF,AC与BF交于点G,AD⊥BC于D,交BF于E,求证:BE=EG.思路:由BC为半圆O的直径,得∠BAC=90°.由直角三角形斜边上中线的性质,只要证EA=EB或EA=EG即可.如要证EA=EB,只需证∠1=∠4,由=,得∠5=∠4,又∠5=∠1,则  相似文献   

4.
题目1:已知,如图1,在矩形 ABCD 中,点E,F 分别在 BC、CD 上,且 CE=AB,CF=BE求证:AE⊥EF.证明:由条件可得△ABE≌△ECF,所以∠1=∠2,又∠B ∠1 ∠3=180°,∠AEF ∠3 ∠2=180°,所以∠AEF=∠B=∠C=90°,所以 AE⊥EF.  相似文献   

5.
李成章 《中等数学》2005,(11):F0004-F0004
题目分别以△ABC的边AB、AC为一边向形外作△ABF和△ACE,使得△ABF∽△ACE,且∠ABF=90°.求证:BE、CF和边BC上的高AH三线共点.分析:因为AH为边BC上的高,故可想到构造一个三角形,使得所证的三条线恰为这个三角形的三条高所在的三条直线.当然图1交于一点.证明:如图1,过点B作BD⊥CF于点D,延长BD、HA交于点M,过点C作CG⊥BE于点G,延长CG、HA交于点M′.于是,只须证明M′与M重合.因为MH⊥BC,MB⊥CF,所以,∠DCB=∠BMH.又∠ABF=90°=∠BDF,因此,∠MBA=∠BFD.故△MBA∽△CFB.则BMCA=FABB,MA=BCF.BAB.同理,…  相似文献   

6.
吴天辅 《云南教育》2003,(11):37-37
适当改变数学问题的题设或结论,抓住本质,不断地将“未知”转化为“已知”,使众多题目相互沟通,递推提升,从而循序渐进地解决一系列问题,对提高学生的思维能力,有重要意义。例1 如图1,在△ABC中,∠ACB=90°,CD、CE、CF分别是△ABC的角平分线,中线和高。求证:∠FCD=∠DCE。证明:∵∠ACB=90°,并且AE=EB∴CE=AE=BE=12AB∠A+∠B=90°∠B=∠BCE,∠ACD=∠BCD∵CF⊥AB∴90°-∠B=90°-∠ACF∴∠B=∠BCE=∠ACF∴∠ACD-∠ACF=∠BCD-∠BCE即:∠FCD=∠DCE例2如图2在△ABC中,∠ACB=90°,AB的垂直平分线MN与AB相…  相似文献   

7.
已知:如图1,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠BC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连结DH与BE相交于点G.(1)求证:BF=AC;(2)求证:CE=1/2BF;(3)CE与BG的大小关系如何?试证明你的结论.  相似文献   

8.
<正>我们把既有内切圆又有外接圆的四边形称为双圆四边形,又称双心四边形.如图,凸四边形ABCD是双圆四边形,点O为其内切圆圆心,点E、F、G、H为切点,设内切圆的半径为R.S表示面积.性质1 AE·CG=BF·DH.证明连结OA、OC,因点E、G是切点,所以OE⊥AB,OG⊥CD,所以∠AEO=∠CGO=Rt∠,易证∠AOE=1/2∠EOH,∠OCG=1/2∠BCD,又∠BAD+∠EOH=180°,∠BAD+∠BCD=180°,所以∠EOH=∠BCD,所以∠AOE=∠OCG,所以△AOE∽  相似文献   

9.
定理 1:若△DEF是△ABC的垂足三角形,则△DEF的三边长分别为acosA、bcosB、CcosC.(如图1) 证明:因为BE⊥AC,CF⊥AB,所以∠BEC=∠CFB=90°,所以B、C、E、F四点共圆.所以∠AEF=∠ABC,又因为∠EAF=∠BAC.所以B△AEF∽△ABC,所以EF/BC=AE/AB,在Rt△ABE中,cosA=AE/AB,所以EF/BC=cosA,所以,EF=acosA,同理可得DF=bcosB,DE=ccosC  相似文献   

10.
例题如图1,⊙O1与⊙O2外切于点P,两圆半径分别为R1,R2,且R1>R2,AB是两圆的外公切线,A,B为切点,AB与O1O2的延长线相交于点C,在AP的延长线上有一点E满足条件:AP∶AB=AC∶AE,求证:(Ⅰ)AC⊥EC;(Ⅱ)PC=EC.图11分析证明,串联基础知识分析(Ⅰ)连PB,O1A,O2B,由AP∶AB=AC∶AE,易知△APB∽△ACE.而要证AC⊥EC,只需证∠ACE=90°.因此,证题关键是证∠APB=90°,故只需证∠2 ∠3=90°.而∠2=∠1=90°-21∠AO1P,∠3=∠4=90°-21∠BO2P,又∠AO1P ∠BO2P=180°,故∠2 ∠3=90°.获证.(Ⅱ)由(Ⅰ),易证∠CPE=∠1=∠E,从而PC=B…  相似文献   

11.
去年十月十五日举行的全国高中数学联赛,二试的第一道题为: 已知△ABC中,AB>AC,∠A的一个外角的平分线交△ABC的外接国于点E,过E作BF⊥AB,垂足为F.求证:2AF=AB-AC. 证法一:过E作EF’⊥AC,垂足为F’,由∠1-∠2得EF’=EF,F’A=FA.连EC,EB,(如图1)∠CBE=∠1 ∠BCE=∠2 ∠1=∠2  相似文献   

12.
20 0 2年IMO中国国家集训队选拔考试第一题 :设凸四边形ABCD的两组对边所在直线分别交于E、F两点 ,两对角线的交点为P ,过P作PO⊥EF于O .求证 :∠BOC =∠DOA .图 1证明 :如图 1 ,只须证明∠POB =∠POD及∠POC =∠POA .而∠POB=∠POD等价于∠BOE =∠DOF .作BM⊥EF、DN⊥EF、AH⊥EF ,垂足分别为M、N、H .为证∠BOE =∠DOF只须证明△BOM∽△DON ,即只须证 BMDN=OMON.由BM∥PO∥DN知 BMDN=BPPD.由BM∥AH∥DN易知BMDN=BMAH·AHDN=BEEA·AFFD.再对△ABD及共点C的三线AP、BF、DE应用塞瓦定理…  相似文献   

13.
北京师大主编的“中学生数学”1991年第三期曾刊出题为“和差化积公式的几何解释”一文,颇受启发,为了进一步探究三角问题的几何化,本文旨在给出积化和差公式的几何解释。设α与β都是锐角(α>β),如图,在直线MN上任取一点F作∠NFA=α,∠BFA=β,取BF=1,BA⊥FA,延长BA至C使AC=BA,连结FC,则FC=FB=1,过A、B、C分别作MN的垂线AD、BE、CG,设垂足分别为D、E、G,过C作CS⊥BE于S。这样不难得到以下几组式子: (1)∠AMC=∠BFA=β∠EBA=∠AFG=α∠EFB=π-(CNFA ∠AFB)  相似文献   

14.
王静 《考试周刊》2013,(51):7-8
<正>一、原题呈现(2012凉山洲)如图1,在矩形ABCD中,AB=6,AD=12,点E在AD边上,且AE=8,EF⊥BE交CD于F.(1)求证:△ABE∽△DEF;(2)求EF的长.解:(1)证明:∵四边形ABCD是矩形∴∠D=∠A=90°∴∠EBA+∠AEB=90°∵EF⊥BE,即∠BEF=90°∴∠DEF+∠AEB=90°∴∠DEF=∠EBA(同为∠AEB的余角)  相似文献   

15.
<正>在初中几何中,模型教学的几何直观性有着很强的指导意义,同时,模型教学也是提升数学学科核心素养的一个重要途径.本文将对传统"手拉手"模型作进一步探究.一、模型及性质模型如图1,两个等腰三角形ABD和BCE,AB=BD,BE=BC且∠ABD=∠CBE=∠α,AE与CD相交于于点F,连接BF.则有:(1)△ABE≌△DBC;(2)∠AFD=∠α;(3) BF平分∠AFC.  相似文献   

16.
同学们知道,等腰三角形底边上中线、高线及顶角的角平分线是互相重合的,我们把等腰三角形的这一性质简称为“三线合一”。一、利用“三线合一”的性质寻找证题途径例1已知:如图1,在△ABC中,AB=AC,BD是AC边上的高。求证:∠CBD=21∠A图1分析:当题目中有等腰三角形的已知条件时,常常作出底边上的中线、高线或者顶角的角平分线中的一条,利用等腰三角形“三线合一”的性质寻找证题途径。证明:作AE⊥BC于E,则∠1 ∠C=90°∵BD是AC边上的高图2∴∠CBD ∠C=90°∴∠1=∠CBD又∵AB=ACAE⊥BC∴∠1=12∠BAC∴∠CBD=21∠BAC变式练习…  相似文献   

17.
题目 已知:如图1,四边形ABCD中,AD//BC,点E是CD的中点,连结AE,BE,AD BC=AB.求证:∠1=∠2,∠3=∠4.  相似文献   

18.
例1已知:四边形ABCD中,对角线AC与BD交于点O,AC=BD,M、N分别是AB、CD的中点,MN交BD、AC分别于点E、F求证:OE=OF.分析:如图1,要证OE=OF,只要证∠OEF=∠OFE,即可.取AD中点G,连接MG、NG,则有MG∥BD,NG∥AC,从而有∠OEF=∠GMN,∠OFE=∠GNM,又MG=12BD,NG=21AC,而AC=BD,故有MG=NG,从而有∠GMN=∠GNM,故可得∠OEF=∠OFE.例2如图2,△ABC中,∠ACB=2∠B,AD⊥BC于点D,M是BC的中点,求证:MD=21AC.分析:取AB中点N,连出△ABC的中位线MN,则有MN=21AC,所以只要证MD=MN即可,连接ND,则ND=21AB=BN,从而…  相似文献   

19.
<正>等腰三角形具有"三线合一"的性质:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.如图1,在△ABC中,AB=AC,D是BC上一点.(1)如果∠1=∠2,那么AD⊥BC,BD=CD;(2)如果BD=CD,那么∠1=∠2,AD⊥BC;(3)如果AD⊥BC,那么∠1=∠2,BD=CD.上述性质中,共存在4个关系式:AB=AC,∠1=∠2,AD⊥BC,BD=CD.而改写后的每条性质都有两个条件,且都有一个条件是"AB=AC".反过来,在关系式∠1=∠2,AD⊥BC,  相似文献   

20.
利用三角形全等可证明线段相等,以及证明与线段相等有关的线段和、差、倍、分等问题;还可证明两角相等,以及证明与两角相等有关的线段平行、线段垂直等问题.例1如图,∠BAC=90°,AB=AC,F是BC上一点,BD⊥AF于D,E为AF延长线上一点,CE⊥AE,求证:DE=AE-CE.证明:∵CE⊥AE,BD⊥AF于D,∴∠AEC=∠BDA=90°.∴∠1=90°-∠3=∠2.在△AEC和△BDA中,∵∠1=∠2,∠AEC=∠BDA,AC=AB,∴△AEC≌△BDA.∴CE=AD.∵DE=AE-AD,∴DE=AE-CE.例2如图,在△ABC中,D是AB的中点,DE∥BC交AC于E,F是BC上的点,BF=DE,求证:DF∥AC.证…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号