首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
We evaluate the performance of the most common estimators of latent Markov (LM) models with covariates in the presence of direct effects of the covariates on the indicators of the LM model. In LM modeling it is common practice not to model such direct effects, ignoring the consequences that might have on the overall model fit and the parameters of interest. However, in the general literature about latent variable modeling it is well known that unmodeled direct effects can severely bias the parameter estimates of the model at hand. We evaluate how the presence of direct effects in?uences the bias and efficiency of the 3 most common estimators of LM models, the 1-step, 2-step, and 3-step approaches. Furthermore, we propose amendments (that were thus far not used in the context of LM modeling) to the 2- and 3-step approaches that make it possible to account for direct effects and eliminate bias as a consequence. This is done by modeling the (possible) direct effects in the first step of the stepwise estimation procedures. We evaluate the proposed estimators through an extensive simulation study, and illustrate them via a real data application. Our results show, first, that the augmented 2-step and 3-step approaches are unbiased and efficient estimators of LM models with direct effects. Second, ignoring the direct effects leads to biased estimates with all existing estimators, the 1-step approach being the most sensitive.  相似文献   

2.
This study used Monte Carlo methods to investigate the accuracy and utility of estimators of overall error and error due to approximation in structural equation models. The effects of sample size, indicator reliabilities, and degree of misspecification were examined. The rescaled noncentrality parameter (McDonald & Marsh, 1990) was examined as a measure of approximation error, whereas the one‐ and two‐sample cross‐validation indices and a sample estimator of overall error (EFo) proposed by Browne and Cudeck (1989, 1993) were presented as measures of overall error. The rescaled noncentrality parameter and EFo provided extremely accurate estimates of the amounts of approximation and overall error, respectively. However, although models with errors of omission produced larger estimates of approximation and overall error, the presence of errors of inclusion had little or no effect on estimates of either type of error. The cross‐validation indices and sample estimator of overall error reached minimum values for the same model as an empirically derived measure of overall error only for models with large amounts of specification error. Implications for the use of these estimators in choosing among competing models were discussed.  相似文献   

3.
Abstract

Factor mixture models are designed for the analysis of multivariate data obtained from a population consisting of distinct latent classes. A common factor model is assumed to hold within each of the latent classes. Factor mixture modeling involves obtaining estimates of the model parameters, and may also be used to assign subjects to their most likely latent class. This simulation study investigates aspects of model performance such as parameter coverage and correct class membership assignment and focuses on covariate effects, model size, and class-specific versus class-invariant parameters. When fitting true models, parameter coverage is good for most parameters even for the smallest class separation investigated in this study (0.5 SD between 2 classes). The same holds for convergence rates. Correct class assignment is unsatisfactory for the small class separation without covariates, but improves dramatically with increasing separation, covariate effects, or both. Model performance is not influenced by the differences in model size investigated here. Class-specific parameters may improve some aspects of model performance but negatively affect other aspects.  相似文献   

4.
This simulation study demonstrates how the choice of estimation method affects indexes of fit and parameter bias for different sample sizes when nested models vary in terms of specification error and the data demonstrate different levels of kurtosis. Using a fully crossed design, data were generated for 11 conditions of peakedness, 3 conditions of misspecification, and 5 different sample sizes. Three estimation methods (maximum likelihood [ML], generalized least squares [GLS], and weighted least squares [WLS]) were compared in terms of overall fit and the discrepancy between estimated parameter values and the true parameter values used to generate the data. Consistent with earlier findings, the results show that ML compared to GLS under conditions of misspecification provides more realistic indexes of overall fit and less biased parameter values for paths that overlap with the true model. However, despite recommendations found in the literature that WLS should be used when data are not normally distributed, we find that WLS under no conditions was preferable to the 2 other estimation procedures in terms of parameter bias and fit. In fact, only for large sample sizes (N = 1,000 and 2,000) and mildly misspecified models did WLS provide estimates and fit indexes close to the ones obtained for ML and GLS. For wrongly specified models WLS tended to give unreliable estimates and over-optimistic values of fit.  相似文献   

5.
In social science research, an indirect effect occurs when the influence of an antecedent variable on the effect variable is mediated by an intervening variable. To compare indirect effects within a sample or across different samples, structural equation modeling (SEM) can be used if the computer program supports model fitting with nonlinear constraints. However, such an option is not routinely available in every popular software program. In this study, the basic idea of generating covariance-equivalent models in SEM is given and a sequential model fitting method is proposed as an alternative without the need to use nonlinear constraints. Under this method, the hypothesized model is transformed into a set of successive covariance-equivalent models so that an indirect effect is reparameterized as a single model parameter in the final transformed model. Real examples are given to illustrate how the proposed method is implemented using EQS, a SEM program that currently does not support the analysis with nonlinear constraints.  相似文献   

6.
The effects of misspecifying intercept-covariate interactions in a 4 time-point latent growth model were the focus of this investigation. The investigation was motivated by school growth studies in which students' entry-level skills may affect their rate of growth. We studied the latent interaction of intercept and a covariate in predicting growth with respect to 3 factors: sample size (100, 200, and 500), 4 levels of magnitude of interaction effect, and 3 correlation values between intercept and covariate (.3, .5, and .7). Correctly specified models were examined to determine power and Type I error rates, and misspecified models were examined to evaluate the effects on power, parameter estimation, bias, and fit indexes. Results showed that, under correctly specified models, power increased as expected with increasing sample size, larger magnitude of interaction, and larger intercept-covariate correlation. Under misspecification, omitting a non-null interaction results in significant change in the estimation of the direct effects of both covariate and intercept in both magnitude and direction, with results dependent on sign of parameter values for main effects and interaction. Including a spurious interaction does not affect estimation of direct effects of intercept and covariate but does increase standard errors. The primary problem in ignoring a non-null interaction lies in misinterpretation of the model, as interactions yield important insights into the nature of the processes being studied.  相似文献   

7.
Functional form misfit is frequently a concern in item response theory (IRT), although the practical implications of misfit are often difficult to evaluate. In this article, we illustrate how seemingly negligible amounts of functional form misfit, when systematic, can be associated with significant distortions of the score metric in vertical scaling contexts. Our analysis uses two‐ and three‐parameter versions of Samejima's logistic positive exponent model (LPE) as a data generating model. Consistent with prior work, we find LPEs generally provide a better comparative fit to real item response data than traditional IRT models (2PL, 3PL). Further, our simulation results illustrate how 2PL‐ or 3PL‐based vertical scaling in the presence of LPE‐induced misspecification leads to an artificial growth deceleration across grades, consistent with that commonly seen in vertical scaling studies. The results raise further concerns about the use of standard IRT models in measuring growth, even apart from the frequently cited concerns of construct shift/multidimensionality across grades.  相似文献   

8.
As low-stakes testing contexts increase, low test-taking effort may serve as a serious validity threat. One common solution to this problem is to identify noneffortful responses and treat them as missing during parameter estimation via the effort-moderated item response theory (EM-IRT) model. Although this model has been shown to outperform traditional IRT models (e.g., two-parameter logistic [2PL]) in parameter estimation under simulated conditions, prior research has failed to examine its performance under violations to the model’s assumptions. Therefore, the objective of this simulation study was to examine item and mean ability parameter recovery when violating the assumptions that noneffortful responding occurs randomly (Assumption 1) and is unrelated to the underlying ability of examinees (Assumption 2). Results demonstrated that, across conditions, the EM-IRT model provided robust item parameter estimates to violations of Assumption 1. However, bias values greater than 0.20 SDs were observed for the EM-IRT model when violating Assumption 2; nonetheless, these values were still lower than the 2PL model. In terms of mean ability estimates, model results indicated equal performance between the EM-IRT and 2PL models across conditions. Across both models, mean ability estimates were found to be biased by more than 0.25 SDs when violating Assumption 2. However, our accompanying empirical study suggested that this biasing occurred under extreme conditions that may not be present in some operational settings. Overall, these results suggest that the EM-IRT model provides superior item and equal mean ability parameter estimates in the presence of model violations under realistic conditions when compared with the 2PL model.  相似文献   

9.
A mixed‐effects item response theory (IRT) model is presented as a logical extension of the generalized linear mixed‐effects modeling approach to formulating explanatory IRT models. Fixed and random coefficients in the extended model are estimated using a Metropolis‐Hastings Robbins‐Monro (MH‐RM) stochastic imputation algorithm to accommodate for increased dimensionality due to modeling multiple design‐ and trait‐based random effects. As a consequence of using this algorithm, more flexible explanatory IRT models, such as the multidimensional four‐parameter logistic model, are easily organized and efficiently estimated for unidimensional and multidimensional tests. Rasch versions of the linear latent trait and latent regression model, along with their extensions, are presented and discussed, Monte Carlo simulations are conducted to determine the efficiency of parameter recovery of the MH‐RM algorithm, and an empirical example using the extended mixed‐effects IRT model is presented.  相似文献   

10.
Growth curve modeling provides a general framework for analyzing longitudinal data from social, behavioral, and educational sciences. Bayesian methods have been used to estimate growth curve models, in which priors need to be specified for unknown parameters. For the covariance parameter matrix, the inverse Wishart prior is most commonly used due to its proper and conjugate properties. However, many researchers have pointed out that the inverse Wishart prior might not work as expected. The purpose of this study is to investigate the influence of the inverse Wishart prior and compare it with a class of separation-strategy priors on the parameter estimates of growth curve models. In this article, we illustrate the use of different types of priors with 2 real data analyses, and then conduct simulation studies to evaluate and compare these priors in estimating both linear and nonlinear growth curve models. For the linear model, the simulation study shows that both the inverse Wishart and the separation-strategy priors work well for the fixed effects parameters. For the Level 1 residual variance estimate, the separation-strategy prior performs better than the inverse Wishart prior. For the covariance matrix, the results are mixed. Overall, the inverse Wishart prior is suggested if the population correlation coefficient and at least 1 of the 2 marginal variances are large. Otherwise, the separation-strategy prior is preferred. For the nonlinear growth curve model, the separation-strategy priors work better than the inverse Wishart prior.  相似文献   

11.
In educational and psychological measurement, a person-fit statistic (PFS) is designed to identify aberrant response patterns. For parametric PFSs, valid inference depends on several assumptions, one of which is that the item response theory (IRT) model is correctly specified. Previous studies have used empirical data sets to explore the effects of model misspecification on PFSs. We further this line of research by using a simulation study, which allows us to explore issues that may be of interest to practitioners. Results show that, depending on the generating and analysis item models, Type I error rates at fixed values of the latent variable may be greatly inflated, even when the aggregate rates are relatively accurate. Results also show that misspecification is most likely to affect PFSs for examinees with extreme latent variable scores. Two empirical data analyses are used to illustrate the importance of model specification.  相似文献   

12.
The cohort growth model (CGM) is a method for estimating the parameters of a latent growth model (LGM) based on cross-sectional data. The CGM models the interindividual differences in the growth rate, and it models how subjects’ growth rate is related to their initial status. We derive model identification for the CGM and illustrate, in a simulation study, that the CGM provides unbiased parameter estimates in most simulation conditions. Based on empirical data we compare the estimates of the CGM with the estimates of the LGM. The results were comparable for both models. Although the estimates of the (co)-variances were different, the estimates of both models led to similar conclusions on the developmental change. Finally, we discuss the advantages and limitations of the CGM, and we provide recommendations for its use in empirical research.  相似文献   

13.
The capacity of Bayesian methods in estimating complex statistical models is undeniable. Bayesian data analysis is seen as having a range of advantages, such as an intuitive probabilistic interpretation of the parameters of interest, the efficient incorporation of prior information to empirical data analysis, model averaging and model selection. As a simplified demonstration, we illustrate (1) how Bayesians test and compare two non‐nested growth curve models using Bayesian estimation with non‐informative prior; (2) how Bayesians model and handle missing outcomes in the context of missing values; and (3) how Bayesians incorporate data‐based evidence from a previous data set, construct informative priors and treat them as extra information while conducting an up‐to‐date analogy analysis.  相似文献   

14.
Latent Markov models with covariates can be estimated via 1-step maximum likelihood. However, this 1-step approach has various disadvantages, such as that the inclusion of covariates in the model might alter the formation of the latent states and that parameter estimation could become infeasible with large numbers of time points, responses, and covariates. This is why researchers typically prefer performing the analysis in a stepwise manner; that is, they first construct the measurement model, then obtain the latent state classifications, and subsequently study the relationship between covariates and latent state memberships. However, such a stepwise approach yields downward-biased estimates of the covariate effects on initial state and transition probabilities. This article, shows how to overcome this problem using a generalization of the bias-corrected 3-step estimation method proposed for latent class analysis (Asparouhov & Muthén, 2014; Bolck, Croon, & Hagenaars, 2004; Vermunt, 2010). We give a formal derivation of the generalization to latent Markov models and discuss how it can be used with many time points by incorporating it into a Baum–Welch type of expectation-maximization algorithm. We evaluate the method through a simulation study and illustrate it using an application on household financial portfolio change. Our study shows that the proposed correction method yields unbiased parameter estimates and accurate standard errors, except for situations with very poorly separated classes and a small sample.  相似文献   

15.
This article considers potential problems that can arise in estimating a unidimensional item response theory (IRT) model when some test items are multidimensional (i.e., show a complex factorial structure). More specifically, this study examines (1) the consequences of model misfit on IRT item parameter estimates due to unintended minor item‐level multidimensionality, and (2) whether a Projection IRT model can provide a useful remedy. A real‐data example is used to illustrate the problem and also is used as a base model for a simulation study. The results suggest that ignoring item‐level multidimensionality might lead to inflated item discrimination parameter estimates when the proportion of multidimensional test items to unidimensional test items is as low as 1:5. The Projection IRT model appears to be a useful tool for updating unidimensional item parameter estimates of multidimensional test items for a purified unidimensional interpretation.  相似文献   

16.
The assessment of mediation in dyadic data is an important issue if researchers are to test process models. Using an extended version of the actor–partner interdependence model the estimation and testing of mediation is complex, especially when dyad members are distinguishable (e.g., heterosexual couples). We show how the complexity of the model can be reduced by assuming specific dyadic patterns. Using structural equation modeling, we demonstrate how specific mediating effects and contrasts among effects can be tested by phantom models that permit point and bootstrap interval estimates. We illustrate the assessment of mediation and the strategies to simplify the model using data from heterosexual couples.  相似文献   

17.
It is well known that measurement error in observable variables induces bias in estimates in standard regression analysis and that structural equation models are a typical solution to this problem. Often, multiple indicator equations are subsumed as part of the structural equation model, allowing for consistent estimation of the relevant regression parameters. In many instances, however, embedding the measurement model into structural equation models is not possible because the model would not be identified. To correct for measurement error one has no other recourse than to provide the exact values of the variances of the measurement error terms of the model, although in practice such variances cannot be ascertained exactly, but only estimated from an independent study. The usual approach so far has been to treat the estimated values of error variances as if they were known exact population values in the subsequent structural equation modeling (SEM) analysis. In this article we show that fixing measurement error variance estimates as if they were true values can make the reported standard errors of the structural parameters of the model smaller than they should be. Inferences about the parameters of interest will be incorrect if the estimated nature of the variances is not taken into account. For general SEM, we derive an explicit expression that provides the terms to be added to the standard errors provided by the standard SEM software that treats the estimated variances as exact population values. Interestingly, we find there is a differential impact of the corrections to be added to the standard errors depending on which parameter of the model is estimated. The theoretical results are illustrated with simulations and also with empirical data on a typical SEM model.  相似文献   

18.
The effects of levels of aggregation on measures of goodness of fit and higher order parameter estimates obtained from confirmatory factor analysis (CFA) were investigated. For a higher order model of academic self‐concept, 3 levels of aggregation were considered—disaggregated, partially disaggregated, and partially aggregated. In the disaggregated model, measured variables represented individual items. In the partially disaggregated model, testlets (groups of 4 items) represented measured variables. In the partially aggregated model, subscale scores represented measured variables. Three indexes of fit were employed: the Tucker‐Lewis Index (TLI), the Comparative Fit Index (CFI), and chi‐square. Solutions for the disaggregated models consistently evidenced poor fit. TLI and CFI values for partially disaggregated and partially aggregated solutions were satisfactory. Standardized parameter estimates were similar across all solutions. Implications of these findings are discussed with consideration of other research on model complexity in CFA.  相似文献   

19.
In this article, we present an approach for comprehensive analysis of the effectiveness of interventions based on nonlinear structural equation mixture models (NSEMM). We provide definitions of average and conditional effects and show how they can be computed. We extend the traditional moderated regression approach to include latent continous and discrete (mixture) variables as well as their higher order interactions, quadratic or more general nonlinear relationships. This new approach can be considered a combination of the recently proposed EffectLiteR approach and the NSEMM approach. A key advantage of this synthesis is that it gives applied researchers the opportunity to gain greater insight into the effectiveness of the intervention. For example, it makes it possible to consider structural equation models for situations where the treatment is noneffective for extreme values of a latent covariate but is effective for medium values, as we illustrate using an example from the educational sciences.  相似文献   

20.
Nonlinear models are effective tools for the analysis of longitudinal data. These models provide a flexible means for describing data that follow complex forms of change. Exponential and logistic functions that include a parameter to represent an asymptote, for instance, are useful for describing responses that tend to level off with time. There are forms of nonlinear latent curve models and nonlinear mixed-effects model that are equivalent, and so given the same set of data, growth function, distributional assumptions, and method of estimation, the 2 models yield equivalent results. There are also forms that are strikingly different and can yield different interpretations for a given set of data. This article discusses cases in which nonlinear mixed-effects models and nonlinear latent curve models are equivalent and those in which they are different and clarifies the estimation needs of the different models. Examples based on empirical data help to illustrate these points.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号