首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
性质已知△ABC 及点 P,若λ_1 λ_2 λ_3=λ_1,λ_2,λ_3都是非零实数,则△PBC,△PCA,△PAB 的面积之比为|λ_1|:|λ_2|:|λ_3|.1 性质证明证明如图1,作向量=λ_1=λ_2,=λ_3,则点 P 为△A′B′C′的重心。所以S_(△PBC)=1/(|λ_2|·|λ_3|)·S_(△PB′C′)  相似文献   

2.
从平面几何到代数、立体几何和解析几何,证明三点共线的命题、方法、技巧,实在不少,它们都可以归结为等价命题.(1)P、Q、R 三点共线(在同一条直线上).(2)P 在直线 QR 上.(3)P 到直线 QR 的距离为0.(4)P、Q、R 都是平面α与β的公共点.(5)P、Q、R 是△ABC 外接圆上一点分别在直线AB、BC、CA 上的射影.(6)S_(△PQR)=0。(7)三点 P、Q、R 在直线 AB 同侧,且 S_(△PAB)=S_(△QAB)=S_(△RAB).(8)线段 PQ、QR、PR 中,有两条之和等于第三条.(9)k_(PQ)=k_(PR).(10)若直线 PQ 的方程为 Ax By C=0,则直线 PR 的方程为 kAx kBy kC=0(k≠0为常数).若设三点 P、Q、R 的坐标分别为(x_1,y_1)、(x_2,y_2)、(x_3,y_3),则有(11)(x_3,y_3)满足方程(x-x_1)/(x_2-x_1)=(y-y_1)/(y_2-y_1).(12)设λ_1=(x_1-x_2)/(x_2-x_3),λ_2=(y_1-y_2)/(y_2-y_3),则λ_1=λ_2.  相似文献   

3.
84年在贵州参加全国数学竞赛的命题工作,会议期间曾讨论过一道问题: 设在△ABC中,D为BC的中点,G为重心,过G任作直线分别交AB、AC于E、F。设AE/AB=h,AF/AC=k,求证我们不想局限于就解决这一个问题,所以,先作一些推广,考虑一下,D为BC上任意一点,G为AD上任意一点,这时的结论是什么? 设BD/DC=λ_1/λ_2,λ_1+λ_2=1,AG/AD=t,我们断言有为了证明(2),我们借助于三角形的面积。设△AEG,△AGF,△ABC的面积分别为S_1,S_2,S。则由于△ABD的高与△ABC的高相同,而  相似文献   

4.
定理 设P是△ABC所在平面上一点,AP,BP,CP分别与对边BC,CA,AB所在的直线交于D,E,F,则AP/PD=AE/EC AF/FB. 证明 如图1,因为△APC和△BPC有公共边CP,故S_(△APC)/S_(△BPC)=AF/FB,同理S_(△APB)/S_(△BPC)=AE/EC。 图1 ∴AE/EC AF/FB=S_(△APC)/S_(△BPC) S_(△ABC)/S_(△BPC)=(S_(△ABC)-S_(△BPC))/S_(△BPC)=(S_(△ABC)/S_(△BPC)-1)=AD/PD-1=AP/PD。 即AP/PD=AE/EC AF/FB。  相似文献   

5.
定理 设A’、B’、C’分别在△ABC的三边BC、CA、AB上,若AC’:C’B=p,BA’:A’C=q,C’B:B’A=r,△ABC与△A’B’C’的面积为S与S_0.则S_0/S=pqr 1/(p 1)(q 1)(r 1)证 设△AB’C’、△BA’C’、△CB’A’的面积分别为S_1、S_2、S_3、则  相似文献   

6.
梅涅劳斯定理:直线L与△ABC的三边AB,BC,CA分别交于X,Y,Z三点,当且仅当λ_1λ_2λ_3=-1。其中λ_1=(AX)/(XB),λ_2=(BY)/(YC),λ_3=(CZ)/(ZA)。下面试将该定理推广到n维空间。 设V是实数域R上的一个n维向量空间R~n,对于V中任一对向量ξ=(X_(11),X_(12),…,X_(1n)),η=(X_(21),X_(22),…,X_(2n))。记d(ξ,η)=~(1/2)(sum from i=1 to n(X_(2i)-X_(1i))~2),定义内积  相似文献   

7.
贵刊1987年第二期刊《有关三角形面积的一个不等式》,读后深受启发,但感到文中对定理——若P为△ABC内的一个任意点,分别连结AP、BP、CP并延长交对边BC、CA、AB于D、E、F,则S_△DEF≤1/4S_△ABC——的证明过于繁复。这里提供一个简单的证法。证明如图设BD:DC=;λ_1,CE:EA=λ_2AF:FB=λ_3,则  相似文献   

8.
一、三角形重心的一个筹价性质 G是ΔABC的重心S_(ΔAGB)=S_(ΔBGC)=S_(ΔCGA) 证明:充分性(如图1)设G是重心,延AG交BC于D,则D是BC的中点,从而 S_(ΔABD)=S_(ΔADC) (1) S_(ΔBGD)=S_(ΔCDG) (2) (1)-(2)得S_(△AGB)=S_(ΔAGC)。  相似文献   

9.
<正>本文现将人教版八年级(下)中的一道习题及其逆命题在中考中的应用介绍如下,供初中师生教与学时参考.题目如图1,直线l1∥l2,△ABC与△DBC的面积相等吗?你还可以画出一些与△ABC面积相等的三角形吗?解因为l_1∥l_2,所以S_(△ABC)=S_(△DBC)(同底等高的三角形面积相等).还可以画出与△ABC面积相等的三角形若干个,只要同底BC,第三个顶点在  相似文献   

10.
四面体是特殊的棱锥,其体积公式有多种,其中之一为:如图,设四面体 A—BCD中,S_(△ABC)=S_1,S_(△BCD)=S_2,二面角 A-BC-D=α,BC=l,则体积 V=(2S_1S_2)/(3l)sinα(*)利用锥体的体积公式不难证明.我们感兴趣的是利用体  相似文献   

11.
题目:锐角△ABC中,∠A的平分线交BC于D,交△ABC的外接圆于点E,自点D分别作DM⊥AB于点M,DN⊥AC于N,证明:S_(△ABC)=S四边形AMEN,(IMO,28—2)。证法/:如图,作出△ABC外接圆直径AL,连接MN,LB,LC,LE,LM,LN。显然,DN,LC同时垂直于AC,DN∥LC,那么S_(△DCN)=S_(△DLN)。同理:S_(△SMB)=S_(△DLM), 则:S_(△ABC)=S四边形AMLN,  相似文献   

12.
有这样一道立体几何题:平面a过△ABC的一边BC,△ABC是△ABC在a内的射影,二面角A-BC-A′=(如图1).求证:S_(△ABC)=S_(△ABC)·cos证明:过A在△ABC中作AD⊥BC交BC于D∵AA′⊥平面a,由三垂线定理逆定理有A′D⊥BC,∴∠ADA′为二面角A-BC-A′的平面角,即∠ADA′=∴A′D=  相似文献   

13.
定理梯形的两条对角线和两腰所在的两个三角形的面积相等,且这个面积是梯形两条对角线与两底所在的两个三角形面积的比例中项。证明:如图1,梯形ABCD中,AD∥BC,记∠AOB=a,△AOD、△BOC的两面积分别为 S_1、S_2,内三角形面积公式可知:S_(△ABC)=S_(△DBC), ∴ S_(△ABC)-S_(△BOC)=S_(△DBC)-S_(△BOC), ∴ S_(△AOB)=S_(△DOC)。又S_1·S_2=1/2OA·ODsina·1/2OB·OCsina =1/2OA·OBsina·1/2OD·OCsina =S_(△AOB)~2。应用上面的定理,解决一类作图题和与梯形面积有关的竞赛题。  相似文献   

14.
命题1“等边三角形内任一点至三边距离之和为一定值”有几种证法,但以下面的证法较简便。证明:如图1,连结PA,PB,PC. ∵S_(△ABC)=S_(△PBC)+S_(△PCA)+S_(△pAB),∴S_(△ABC)=1/2BC·PD+1/2CA·PE+1/2AB·PF又 AB=BC=CA,∴ PD+PE+PF=2S_(△ABC)/BC. 等边三角形的这一性质可推广到等边凸多边形中,以上的证明实质上给出如下的定理1 等边凸多边形内任一点至各边的距离之和为定值。特殊地,正多边形内任一点至各边的距离之和为定值。  相似文献   

15.
如果定义T_(△HKG)=S_(△KHG),当△KHG 与△ABC 有公共内点,—S_(△KHG),当△KHG 与△ABG 无公共内点,则有如下定理:定理3 设点 O 与△ABC 共面,则T_(△BOC)+T(△AOC)+T_(△AOB)=0, (15)且 T_(△BOC)+T_(△AOC)+T_(△AOB)=S_(△ABC). (16)证明:按点 O 所在的位置讨论如下:(Ⅰ)当点 O 在△ABC 的内部或边界上时,△ABC 被分割为△BOC,△AOC 和△AOB(当 O 在边界上时,当中有的是退化三角形),所以有T_(△BOC)=S_(△BOC),T_(△AOC)=S_(△AOC),T_(△AOB)=S_(△AOB),且其和等于 S_(△ABC),即得(16)式,且根据定理2的结论1,得  相似文献   

16.
众所周知,若P为△ABC的重心,连结AP、BP、CP并延长分别交对边BC、CA、AB于D、E、F,则 S_(△DEF)=1/4S_(△ABC)。如果P为△ABC内的任意一点,那么S_(△DEF)和1/4S(△ABC)又有何大小关系呢?本文将回答这一问题。定理:若P为△ABC内的任意一点,分别连结AP、BP、CP并延长交对边BC、CA、AB于D、E、F,则  相似文献   

17.
本文现将三角形内角平分线定理的推广及其在证明几个著名几可定理中的应用介绍如下: 一推广如图1,已知P为△ABC的AB边上一(内分)点,求证:PA/PB=CAsinα/(CBsinβ) 证明∵ S_(△CAP)/S_(△CBP)=PA/PB(同高) ∴ S_(△CAP)/S_(△CBP)=1/2CA·CPsinα/(1/2CB·CPsinβ)显然,当α=β时,则sinα=sinβ,  相似文献   

18.
在 Rt△ABC中,AC=b,BC=a,斜边 AB 上的高为 h,则1/(h~2)=1/(a~2) 1/(b~2).它有点类似于勾股定理,加以推广,即得类似于正、余弦定理的命题.定理在任意△ABC 中,BC=a,CA=b,AB=c,BC、CA、AB 边上的高分别为 h_a、h_b、h_c,则有  相似文献   

19.
本文提出一个常见几何图形的几个特殊性质,并通过若干典型例子说明其应用。 如图,P为△ABC中BC边上一点,PE∥BA,PF∥CA。设当i=1,2,3时,C_i(S_i,R_i,r_i)分别表示△ABC,△FBP,△EPC B的周长(面积,外接圆的半径,内切圆的半径)。S'表示□AFPE的面积。 显然△ABC∽△FBP,△ABC∽△EPC,分别记其相似比为λ_1,λ_2。则有:  相似文献   

20.
276.设P是正△ABC内一点,分别作P关于直线AB、BC、CA的对称点C_1、A_1、B_1,并设△ABC、△A_1B_1C_1的面积分别为S、S′,试证:S′≤S。证:如图1,设正△ABC的边长为x,P到三边BC、CA、AB的距离分别为a、b、c,△PB_1C_1、△PC_1A_1、△PA_1B_1的面积分别为S_1、S_2、S_3,那么S′=S_1+S_2+S_3,且因∠A_1PB_1=∠B_1PC_1=∠C_1PA_1=120°,所以 S_1=1/2·2b·2c·sin120°=3~(1/2)bc, S_2=3~(1/2)ca,S_3=3~(1/2)ab。因正三角形内任一点到三边的距离之和等于此正三角形的高,即a+b+c=3~(1/2)/2x,于是S′=3~(1/2)(bc+ca+ab)≤3~(1/2)·1/3(a+b+c)~2=3~(1/2)/3·(3~(1/2)/2x)~2=3~(1/2)/4x~2=S。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号