首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many sports associated with anterior cruciate ligament (ACL) injury require athletes attend to a ball during participation. We investigated effects of attending to a ball on lower extremity mechanics during a side-cut maneuver and if these effects are consistent for males and females. Sagittal and frontal plane hip and knee kinematics and joint moments were measured during side-cut maneuvers in 19 male and 19 female National Collegiate Athletic Association division III basketball players. Participants also experienced two side-cut conditions that required attention to a ball. Our results did not indicate that the effect of attention varies with gender. However, during side-cut conditions while attending to a ball, internal knee adductor moment was 20% greater (p = 0.03) and peak knee flexion angle was 4 degrees larger (p < 0.01). Females demonstrated 5 degrees less hip flexion (p = 0.046), 12 degrees less knee flexion (p < 0.01), and 4 degrees more knee abduction (p = 0.026) at initial contact during all side-cut conditions than males. Attention to a ball may affect lower extremity mechanics relevant to ACL injury. The validity of laboratory studies of lower extremity mechanics for sports that include attention to a ball may be increased if participants are required to attend to a ball during the task.  相似文献   

2.
Many sports associated with anterior cruciate ligament (ACL) injury require athletes attend to a ball during participation. We investigated effects of attending to a ball on lower extremity mechanics during a side-cut maneuver and if these effects are consistent for males and females. Sagittal and frontal plane hip and knee kinematics and joint moments were measured during side-cut maneuvers in 19 male and 19 female National Collegiate Athletic Association division III basketball players. Participants also experienced two side-cut conditions that required attention to a ball. Our results did not indicate that the effect of attention varies with gender. However, during side-cut conditions while attending to a ball, internal knee adductor moment was 20% greater (p = 0.03) and peak knee flexion angle was 4° larger (p < 0.01). Females demonstrated 5° less hip flexion (p = 0.046), 12° less knee flexion (p < 0.01), and 4° more knee abduction (p = 0.026) at initial contact during all side-cut conditions than males. Attention to a ball may affect lower extremity mechanics relevant to ACL injury. The validity of laboratory studies of lower extremity mechanics for sports that include attention to a ball may be increased if participants are required to attend to a ball during the task.  相似文献   

3.
Many field sports involve equipment that restricts one or both arms from moving while running. Arm swing during running has been examined from a biomechanical and physiologic perspective but not from an injury perspective. Moreover, only bilateral arm swing suppression has been studied with respect to running. The purpose of this study was to determine the influence of running with one arm restrained on lower extremity mechanics associated with running or sport-related injury. Fifteen healthy participants ran at a self-selected speed with typical arm swing, with one arm restrained and with both arms restrained. Lower extremity kinematics and spatiotemporal measures were analysed for all arm swing conditions. Running with one arm restrained resulted in increased frontal plane knee and hip angles, decreased foot strike angle, and decreased centre of mass vertical displacement compared to typical arm swing or bilateral arm swing restriction. Stride length was decreased and step frequency increased when running with one or both arms restrained. Unilateral arm swing restriction induces changes in lower extremity kinematics that are not similar to running with bilateral arm swing restriction or typical arm swing motion. Running with one arm restrained increases frontal plane mechanics associated with risk of knee injury.  相似文献   

4.
Running on side-sloped surfaces is a common obstacle in the environment; however, how and to what extent the lower extremity kinematics adapt is not well known. The purpose of this study was to determine the effects of side-sloped surfaces on three-dimensional kinematics of hip, knee, and ankle during stance phase of running. Ten healthy adult males ran barefoot along an inclinable runway in level (0°) and side-sloped (10° up-slope and down-slope inclinations, respectively) configurations. Right hip, knee, and ankle angles along with their time of occurrence were analysed using repeated measures MANOVA. Up-slope hip was more adducted (p = 0.015) and internally rotated (p = 0.030). Knee had greater external rotations during side-sloped running at heel-strike (p = 0.005), while at toe-off, it rotated externally and internally during up-slope and down-slope running, respectively (p = 0.001). Down-slope ankle had greatest plantar flexion (p = 0.001). Up-slope ankle had greatest eversion compared with down-slope (p = 0.043), while it was more externally rotated (p = 0.030). These motion patterns are necessary to adjust the lower extremity length during side-sloped running. Timing differences in the kinematic events of hip adduction and external rotation, and ankle eversion were observed (p = 0.006). Knowledge on these alterations is a valuable tool in adopting strategies to enhance performance while preventing injury.  相似文献   

5.
Lower extremity joint loading during walking is strongly affected by the steepness of the slope and might cause pain and injuries in lower extremity joint structures. One feasible measure to reduce joint loading is the reduction of walking speed. Positive effects have been shown for level walking, but not for graded walking or hiking conditions. The aim of the study was to quantify the effect of walking speed (separated into the two components, step length and cadence) on the joint power of the hip, knee and ankle and to determine the knee joint forces in uphill and downhill walking. Ten participants walked up and down a ramp with step lengths of 0.46, 0.575 and 0.69 m and cadences of 80, 100 and 120 steps per minute. The ramp was equipped with a force platform and the locomotion was filmed with a 60 Hz video camera. Loading of the lower extremity joints was determined using inverse dynamics. A two-dimensional knee model was used to calculate forces in the knee structures during the stance phase. Walking speed affected lower extremity joint loading substantially and significantly. Change of step length caused much greater loading changes for all joints compared with change of cadence; the effects were more distinct in downhill than in uphill walking. The results indicate that lower extremity joint loading can be effectively controlled by varying step length and cadence during graded uphill and downhill walking. Hikers can avoid or reduce pain and injuries by reducing walking speed, particularly in downhill walking.  相似文献   

6.
The aim of this study was to determine whether sex differences and effect of drop heights exist in stiffness alteration of the lower extremity during a landing task with a drop height increment. Twelve male participants and twelve female participants performed drop landings at two drop heights (DL40 and DL60; in cm). The leg and joint stiffnesses were calculated using a spring–mass model, and the joint angular kinematics were calculated using motion capture. Ground reaction forces (GRFs) were recorded using a force plate. The peak vertical GRF of the females was significantly increased when the drop height was raised from 40 to 60 cm. Significantly less leg and knee stiffness was observed for DL60 in females. The ankle, knee, and hip angular displacement during landing were significantly increased with drop height increment in both sexes. The knee and hip flexion angular velocities at contact were significantly greater for the 60 cm drop height relative to the 40 cm drop height in males. These sex disparities regarding the lower extremity stiffness and kinematics alterations during drop landing with a drop height increment would predispose females to lower extremity injury.  相似文献   

7.
The incidence of patellofemoral pain (PFP) is 2 times greater in females compared with males of similar activity levels; however, the exact reason for this discrepancy remains unclear. Abnormal mechanics of the hip and knee in the sagittal, frontal, and transverse planes have been associated with an increased risk of PFP. The purpose of this study was to compare the mechanics of the lower extremity in males and females during running in order to better understand the reason(s) behind the sex discrepancy in PFP. Three-dimensional kinematic and kinetic data were collected as male and female participants completed overground running trials at a speed of 4.0 m · s?1 (±5%). Patellofemoral joint stress (PFJS) was estimated using a sagittal plane knee model. The kinematics of the hip and knee in the frontal and transverse planes were also analysed. Male participants demonstrated significantly greater sagittal plane peak PFJS in comparison with the female participants (P < .001, ES = 1.9). However, the female participants demonstrated 3.5° greater peak hip adduction and 3.4° greater peak hip internal rotation (IR). As a result, it appears that the sex discrepancy in PFP is more likely to be related to differences in the kinematics of the hip in the frontal and transverse planes than differences in sagittal plane PFJS.  相似文献   

8.
This study aimed to investigate activation characteristics of the biceps femoris long head (BFlh) and semitendinosus (ST) muscles during the acceleration and maximum-speed phases of sprinting. Lower-extremity kinematics and electromyographic (EMG) activities of the BFlh and ST muscles were examined during the acceleration sprint and maximum-speed sprint in 13 male sprinters during an overground sprinting. Differences in hamstring activation during each divided phases and in the hip and knee joint angles and torques at each time point of the sprinting gait cycle were determined between two sprints. During the early stance of the acceleration sprint, the hip extension torque was significantly greater than during the maximum-speed sprint, and the relative EMG activation of the BFlh muscle was significantly higher than that of the ST muscle. During the late stance and terminal mid-swing of maximum-speed sprint, the knee was more extended and a higher knee flexion moment was observed compared to the acceleration sprint, and the ST muscle showed higher activation than that of the BFlh. These results indicate that the functional demands of the medial and lateral hamstring muscles differ between two different sprint performances.  相似文献   

9.
The objective of this study was to compare the three-dimensional lower extremity running kinematics of young adult runners and elderly runners. Seventeen elderly adults (age 67-73 years) and 17 young adults (age 26-36 years) ran at 3.1 m x s(-1) on a treadmill while the movements of the lower extremity during the stance phase were recorded at 120 Hz using three-dimensional video. The three-dimensional kinematics of the lower limb segments and of the ankle and knee joints were determined, and selected variables were calculated to describe the movement. Our results suggest that elderly runners have a different movement pattern of the lower extremity from that of young adults during the stance phase of running. Compared with the young adults, the elderly runners had a substantial decrease in stride length (1.97 vs. 2.23 m; P = 0.01), an increase in stride frequency (1.58 vs. 1.37 Hz; P = 0.002), less knee flexion/extension range of motion (26 vs. 33 degrees ; P = 0.002), less tibial internal/external rotation range of motion (9 vs. 12 degrees ; P < 0.001), larger external rotation angle of the foot segment (toe-out angle) at the heel strike (-5.8 vs. -1.0 degrees ; P = 0.009), and greater asynchronies between the ankle and knee movements during running. These results may help to explain why elderly individuals could be more susceptible to running-related injuries.  相似文献   

10.
The treadmill is an attractive device for the investigation of human locomotion, yet the extent to which lower limb kinematics differ from overground running remains a controversial topic. This study aimed to provide an extensive three-dimensional kinematic comparison of the lower extremities during overground and treadmill running. Twelve participants ran at 4.0 m/s ( ± 5%) in both treadmill and overground conditions. Angular kinematic parameters of the lower extremities during the stance phase were collected at 250 Hz using an eight-camera motion analysis system. Hip, knee, and ankle joint kinematics were quantified in the sagittal, coronal, and transverse planes, and contrasted using paired t-tests. Of the analysed parameters hip flexion at footstrike and ankle excursion to peak angle were found to be significantly reduced during treadmill running by 12° (p = 0.001) and 6.6° (p = 0.010), respectively. Treadmill running was found to be associated with significantly greater peak ankle eversion (by 6.3°, p = 0.006). It was concluded that the mechanics of treadmill running cannot be generalized to overground running.  相似文献   

11.
Limb dominance theory suggests that females tend to be more one-leg dominant and exhibit greater kinematic and kinetic leg asymmetries than their male counterparts, contributing to the increased risk of anterior cruciate ligament injury among female athletes. Thus, the purpose of this study was to examine the influences of sex and limb dominance on lower extremity joint mechanics during unilateral land-and-cut manoeuvres. Twenty-one women and 21 men completed land-and-cut manoeuvres on their dominant limb as well as their nondominant limb. Three-dimensional kinematics and kinetics were calculated bilaterally for the entire stance phase of the manoeuvre. Women performed land-and-cut manoeuvres with altered hip motions and loads as well as greater knee abduction at touchdown compared to men. Dominant limb land-and-cut manoeuvres where characterised by decreased hip flexion at touchdown as well as decreased hip flexion and adduction range of motion compared to nondominant land-and-cuts regardless of sex. The observed sex differences are consistent with previous research regarding mechanisms underlying the sex disparity in anterior cruciate ligament injury rates. However, observed differences regarding limb dominances appear somewhat arbitrary and did not suggest that the dominant or nondominant limb would be at increased risk of anterior cruciate ligament injury.  相似文献   

12.
中老年人步态指标与衰老关系的研究   总被引:18,自引:1,他引:17  
分析139名中老年人在正常步行下的步态,研究从中年到老年这一衰老过程中步态指标的变化。结果表明,在周期的划分,步长与步速,髋、膝、踝及力的变化,中年人与老年人存在较大差别,老年人的下肢肌肉收缩能力下降,脚跟着地、踝跖屈和屈膝等动作变缓慢,仲髋动作不充分,摆动腿抬高的程度降低,行走时拖拉。  相似文献   

13.
The purpose of this study is to examine the peak sagittal plane joint angles and joint moments of the lower extremity during the deep squat (DS) movement of the Functional Movement Screen (FMS) to assess differences between the classifications (1,2,3). Twenty-eight participants volunteered for the study and were screened to assess their FMS score on the DS task. All participants underwent a quantitative movement analysis performing the FMS DS movement at a self-selected speed. The participants in Group 3 exhibited greater dorsiflexion excursion compared to those in Group 1. Participants in Group 3 had greater peak knee flexion and knee flexion excursion than those in Group 2 who exhibited more than the participants in Group 1. Group 3 also exhibited a greater peak knee extension moment compared to Group 1. At the hip, Groups 3 and 2 exhibited greater peak hip flexion, hip flexion excursion and peak hip extension moment compared to Group 1. Thus, it appears that individuals who score differently on the deep squat as determined by the FMS exhibit differences in mechanics that may be beneficial in assessing strategies for interventions. Future research should assess how fundamental changes in mobility and stability independently affect DS performance.  相似文献   

14.
The purpose of this study is to examine the peak sagittal plane joint angles and joint moments of the lower extremity during the deep squat (DS) movement of the Functional Movement Screen (FMS) to assess differences between the classifications (1,2,3). Twenty-eight participants volunteered for the study and were screened to assess their FMS score on the DS task. All participants underwent a quantitative movement analysis performing the FMS DS movement at a self-selected speed. The participants in Group 3 exhibited greater dorsiflexion excursion compared to those in Group 1. Participants in Group 3 had greater peak knee flexion and knee flexion excursion than those in Group 2 who exhibited more than the participants in Group 1. Group 3 also exhibited a greater peak knee extension moment compared to Group 1. At the hip, Groups 3 and 2 exhibited greater peak hip flexion, hip flexion excursion and peak hip extension moment compared to Group 1. Thus, it appears that individuals who score differently on the deep squat as determined by the FMS exhibit differences in mechanics that may be beneficial in assessing strategies for interventions. Future research should assess how fundamental changes in mobility and stability independently affect DS performance.  相似文献   

15.
The purpose of the study was to determine if the kinematics exhibited by skilled runners wearing a unilateral, transtibial prosthesis during the curve section of a 200-m sprint race were influenced by interaction of limb-type (prosthetic limb (PROS-L) vs. nonprosthetic limb (NONPROS-L)) and curve-side (inside and outside limb relative to the centre of the curve). Step kinematics, toe clearance and knee and hip flexion/extension, hip ab/adduction for one stride of each limb were generated from video of 13 males running the curve during an international 200 m transtibial-classified competition. Using planned comparisons (P < 0.05), limb-type and curve-side interactions showed shortest support time and lowest hip abduction displacement by outside-NONPROS-L; shortest step length and longest time to peak knee flexion by the inside-PROS-L. For limb-type, greater maximum knee flexion angle and lower hip extension angles and displacement during support and toe clearance of PROS-Ls occurred. For curve-side, higher hip abduction angles during non-support were displayed by inside-limbs. Therefore, practitioners should consider that, for curve running, these kinematics are affected mostly by PROS-L limitations, with no clear advantage of having the PROS-L on either side of the curve.  相似文献   

16.
Abstract

In this study, we examined hamstring muscle activation at different running speeds to help better understand the functional characteristics of each hamstring muscle. Eight healthy male track and field athletes (20.1 ± 1.1 years) performed treadmill running at 50%, 75%, 85%, and 95% of their maximum velocity. Lower extremity kinematics of the hip and knee joint were calculated. The surface electromyographic activities of the biceps femoris and semitendinosus muscles were also recorded. Increasing the running speed from 85% to 95% significantly increased the activation of the hamstring muscles during the late swing phase, while lower extremity kinematics did not change significantly. During the middle swing phase, the activity of the semitendinosus muscle was significantly greater than that of the biceps femoris muscle at 75%, 85%, and 95% of running speed. Statistically significant differences in peak activation time were observed between the biceps femoris and semitendinosus during 95%max running (P < 0.05 for stance phase, P < 0.01 for late swing phase). Significant differences in the activation patterns between the biceps femoris and semitendinosus muscles were observed as running speed was increased, indicating that complex neuromuscular coordination patterns occurred during the running cycle at near maximum sprinting speeds.  相似文献   

17.
A proficient serve is critical to successful tennis performance, and consequently coaches and players devote considerable time refining this stroke. In so doing, a wide variety of interventions are used or trialled, generally with very little empirical support. This study examined the efficacy of a commonly used service intervention, where players focus on exaggerating their finish (arabesque) position to promote specific changes in lower limb and trunk kinematics. The kinematics of eight high-performance junior players hitting flat serves were compared to the acute changes in kinematics elicited by the arabesque follow through position on serves using a 10-camera VICON MX motion analysis system. The significantly greater front (landing leg) hip flexion (p < 0.05) and forward trunk flexion (p < 0.05) confirmed the more exaggerated arabesque landing position following the arabesque instruction. The arabesque instruction resulted in increased frontal plane trunk range of motion and peak angular velocity in the forward swing, and increased leg drive during the drive phase. Practically, the results support the use of the arabesque instruction, effectively promoting the desired acute changes in trunk kinematics (i.e. increased frontal plane trunk rotation angular velocity) and leg drive (i.e. increased back knee extension angular velocity and front/back vertical hip velocity).  相似文献   

18.
The purpose of this study was to evaluate the effects of a functional agility fatigue protocol on lower extremity biomechanics between two unanticipated tasks (stop-jump and sidestep). The subjects consisted of fifteen female collegiate soccer athletes (19±0.7 years, 1.67±0.1 m, 61.7±8 kg) free of lower extremity injury. Participants performed five trials of stop-jump and sidestep tasks. A functional short-term agility protocol was performed, and immediately following participants repeated the unanticipated running tasks. Lower extremity kinematic and kinetic values were obtained pre and post fatigue. Repeated measures analyses of variance were conducted for each dependent variable with an alpha level set at 0.05. Knee position post-fatigue had increased knee internal rotation (11.4±7.5° vs. 7.9±6.5° p=0.011) than pre-fatigue, and a decreased knee flexion angle (-36.6±6.2° vs. ?40.0±6.3°, p = 0.003), as well as hip position post-fatigue had decreased hip flexion angle (35.5±8.7° vs. 43.2±9.5°, p = 0.002). A quick functional fatigue protocol altered lower extremity mechanics of Division I collegiate soccer athletes during landing tasks. Proper mechanics should be emphasized from the beginning of practice/game to aid in potentially minimizing the effects of fatigue in lower extremity mechanics.  相似文献   

19.
Abstract

The knee is a common site of injury in netball players. In this study, 10 high-performance netball players underwent a biomechanical assessment of their single leg landing technique whilst receiving a pass. Three-dimensional video and ground reaction force data were recorded using a motion analysis system. Net internal knee joint moments were calculated using a rigid body analysis and inverse dynamics. The kinematics of the support leg and front-on video footage was used to investigate whether players adhered to guidelines on safe and effective landing strategies. Results indicated that for most players the internal valgus moment was the largest frontal plane knee moment during the landing phase. This may reflect a relatively greater need to resist varus knee excursion or may be related to the kinematics of the hip. For 6 of the 10 players the rapid change to an internal knee valgus moment coincided with hip adduction. Since an increase in the magnitude of the internal valgus moment may increase the compressive forces in the medial compartment of the knee, further work should be undertaken to determine if a neuromuscular training intervention to improve the strength of the hip musculature may be beneficial for these players. A large relative excursion of the knee compared to the hip may indicate that these players had a greater reliance on the more distal segments of the lower extremity for the attenuation of the ground reaction forces. This information may be used to better understand potential knee injury mechanisms in netball players.  相似文献   

20.
Abstract

The effects of saddle height on pedal forces and joint kinetics (e.g. mechanical work) are unclear. Therefore, we assessed the effects of saddle height on pedal forces, joint mechanical work and kinematics in 12 cyclists and 12 triathletes. Four sub-maximal 2-min cycling trials (3.4 W/kg and 90 rpm) were conducted using preferred, low and high saddle heights (±10° knee flexion at 6 o'clock crank position from the individual preferred height) and an advocated optimal saddle height (25° knee flexion at 6 o'clock crank position). Right pedal forces and lower limb kinematics were compared using effect sizes (ES). Increases in saddle height (5% of preferred height, ES=4.6) resulted in large increases in index of effectiveness (7%, ES=1.2) at the optimal compared to the preferred saddle height for cyclists. Greater knee (11–15%, ES=1.6) and smaller hip (6–8%, ES=1.7) angles were observed at the low (cyclists and triathletes) and preferred (triathletes only) saddle heights compared to high and optimal saddle heights. Smaller hip angle (5%, ES=1.0) and greater hip range of motion (9%, ES=1.0) were observed at the preferred saddle height for triathletes compared to cyclists. Changes in saddle height up to 5% of preferred saddle height for cyclists and 7% for triathletes affected hip and knee angles but not joint mechanical work. Cyclists and triathletes would opt for saddle heights <5 and <7%, respectively, within a range of their existing saddle height.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号