首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 577 毫秒
1.
Eight physics teachers from three research schools working in collaboration with the author developed, tried, and evaluated a teaching module on “Force”. The module was designed for students in a non-western society, for whom there is no cultural term that explicitly defines the concept. This paper describes illustrative examples of the trials and evaluation exercise of the module. It concludes with a summary of the effects the teachers' interaction with the module had on their professional development. Specializations: Physics education, science education, education in developing countries.  相似文献   

2.
The premise that underlies the pre-service science teacher education program at Monash University is the need to focus on the nature of learning in ways that encourage student-teachers to reconsider their conceptions of learning and how this relates to their view of teaching. The purpose of teaching portfolios is to act as a prompt for student-teachers to reconsider these conceptions and as a way of helping them to better articulate their professional knowledge. The Science (Stream 3) student teachers construct a portfolio of teaching strategies, episodes, ideas, etc. that demonstrate how they see their role as science teachers. The portfolio is ungraded, openended and organised as a dynamic assessment task, not just a static end product. This paper reports on student-teachers' understanding of, and approach to portfolios as they come to understand its purpose and value. Specializations: chemistry and science education, technology and industry links with science curriculum Specializations: science education, reflection, curriculum and evaluation  相似文献   

3.
The Science Education Professional Development (SEPD) Project was commissioned by the Commonwealth Department of Employment, Education and Training (DEET) as part of its Projects of National Significance Program. Its brief was to develop a national strategy for enhancing the professional development of science teachers. This paper summarises one component of the Project's work, an exploration of the feasibility of establishing professional standards or expectations for teachers of science. The aim was to give clearer purpose and direction to professional development planning and to provide a more valid basis for evaluating science teachers for career development. Specializations: Teachers' work and policy, teacher development, educational evaluation, teacher evaluation, research on teaching.  相似文献   

4.
It is argued that the introduction of many new curricular with their associated teaching practices have failed because the beliefs, views and attitudes of teachers have been ignored. This paper reports the implications of the initial belicfs of primary school teachers involved in a professional development program about science and technology education. In particular, a mismatch between teachers views of learning and teaching is identified and analysed. Specializations: Science education, professional development Specialisation: primary science and technology education  相似文献   

5.
Conclusion The difficulty of sharing meaning of curriculum intentions between different groups is highlighted in this study. The acceptance of the novel features of the Chemistry Study Design is mixed. The longitudinal nature of the study helped to identify the difficulty teachers had in understanding the meaning of these novel features although the experiences of teaching units in the VCE chemistry course have enabled some teachers to shift in their construction of the meaning of the words and messages around them. Specializations: chemistry and science education, technology and industry links with sicence in schools. Specializations: science and technology curriculum, environmental education, educational disadvantage. Specializations: curriculum change, science career paths. Specializations: science education, computers in schools.  相似文献   

6.
While constructivism has emerged as a major reform in science education from the last decade, wide-spread adoption of constructivist practices in school laboratories and classrooms is yet to be achieved. If constructivist approaches are to be utilised more widely, teachers will need to accept a more active and constructivist role in their own pedagogical learning. One experienced junior science teacher was able to implement constructivist approaches in her classroom by using a personally constructed metaphor to guide her practice. Specializations: science education, teaching of thinking, professional development. Specializations: constructivism, professional development.  相似文献   

7.
This paper reports an empirical study of science education in Australian primary schools. The data show that, while funding is seen as a major determinant of what is taught and how it is taught, teacher-confidence and teacher-knowledge are also important variables. Teachers are most confident with topics drawn from the biological sciences, particularly things to do with plants. With this exception there is no shared body of science education knowledge that could be used to develop a curriculum for science education. There was evidence that most teachers see a need for a hands-on approach to primary science education involving the use of concrete materials. A substantial proportion of teachers agree that some of the problems would be alleviated by having a set course together with simple, prepared kits containing sample learning experiences. Any such materials must make provision for individual teachers to capitalise on critical teaching incidents as they arise and must not undermine the professional pride that teachers have in their work. Specializations: science education, school effectiveness, teacher education Specializations: science education, teacher education in science  相似文献   

8.
About 100 science teachers in the Sydney Metropolitan West Region were surveyed to determine their professional development needs and the ways in which these needs could be met. The findings provide a ranking of science teacher perceived professional development needs, a list of possible incentives to motivate science teachers to complete inservice programs (in priority order) and an indication of the preferred modes of presentation to meet professional development needs. In general, science teachers stated a preference for professional development related to modern trends in science education directly related to classroom practice. In contrast to recommendations from DEET, science teachers indicated a preference for traditional models of inservice. Data related to preferred mode of inservice indicated significant gender differences. Specializations: science teacher professional development. Specializations: educational psychology and research design. Specialization: constructivist approaches in science education.  相似文献   

9.
Six beginning primary school teachers pioneering the Interactive Teaching approach to science were studied in their first year of teaching. Interviews with the beginning teachers revcaled that they faced several obstacles to the implementation of the interactive teaching of science. These included lack of collegial support, lack of feedback on their teaching, difficulty assessing the learning of their pupils, and the differences between the culture of learning of the alternative science pedagogy and that of their pupils. By the end of the year, teachers had reconstructed the alternative science pedagogy in ways that reduced these difficulties. The interviews also provided evidence that ongoing support by teachers and teacher-educators versed in the alternative pedagogy can make beginning teacher's implementation of the Interactive Teaching of science less difficult. Specializations: physics education, beginning teachers. Specializations: misconceptions, assessment.  相似文献   

10.
In 1990, a large proportion of third year primary trainee teachers at Victoria College had observed or taught very few or no science lessons during the first two years of their course. The students felt that a lack of content knowledge, a crowded school curriculum, and problems associated with managing resources and equipment, were the main factors contributing to the low level of science being taught in schools. By the end of their third year significantly more students had taught science than after the second year. There was also a change in approach to teaching science with more practical activities being included than previously. The science method unit taught to the students in the third year of their course contributed to this increase. The students considered the hands-on activities in class to have been the most effective aspect of the unit in their preparation for the teaching of primary science. Specializations: children's learning in science, primary teacher education. Specializations: student understanding of biology, evaluation of formal and informal educational settings. Specializations: gender, science and technology, environmental education. Specializations: children's learning in science, language and science.  相似文献   

11.
This paper describes how an idea for technology education materials developed into a process for producing unique curriculum modules for teaching technology in a gender-inclusive way to primary children. Using a case-study format, the paper describes the interaction between participants, the sequential evolution of the materials themselves and the degree to which success was achieved in terms of the original goals. The study demonstrates how an awareness of gender bias needs to be a feature from the earliest stages of curriculum development, through to the trialling and modification stages. The curriculum materials were a product of effective cooperation between teachers, science educators and community representatives. They utilise a “process” approach to the teaching of technology and in this presentation, we demonstrate how this same approach is a useful framework for describing this particular curriculum development. Specializations: primary science and technology education, gender issues. Specializations: diagnosis of student learning and teaching for conceptual change, technology education, curriculum evaluation. Specializations: affective aspects of science and technology education, gender issues.  相似文献   

12.
Much Catholic school and church rhetoric suggests that Catholic schools possess distinctive learning environments. Research into this aspect of Catholic schooling has been hampered by the lack of an appropriate assessment instrument. By drawing on contemporary church literature, the perceptions of personnel involved in Catholic education and existing classroom environment questionnaires, a new instrument was developed to assess student perceptions of classroom psychosocial environment in Catholic schools. The use of this instrument in 64 classrooms in Catholic and Government schools indicated significant differences on some scales. The distinctive nature of Catholic schooling did not extend to all classroom environment dimensions deemed important to Catholic education. Specializations: Catholic education, learning environments. Specializations: conceptual change in students, science teacher professional development, scientific reasoning, learning environments. Specializations: learning environments, science education, educational evaluation, curriculum.  相似文献   

13.
Australia's changing political, social and economic agendas have triggered a critical analysis of school curriculum. Part of this consideration has been concern over the future of science education within the context of senior schooling. Following the completion of the Senior Science Future Directions Project commissioned by the Queensland Board of Senior Secondary School Studies, fifteen issues were identified. These issues, grouped by the needs of the science disciplines, society and the individual student, are discussed with the view of understanding the future design of senior science syllabuses. Specializations: biology teacher education, science curriculum development. Specializations: professional development, curriculum design and evaluation. Specializations: professional development, science teaching.  相似文献   

14.
The aim of the Primary and Early Childhood Science and Technology Education Project (PECSTEP) is to improve teaching and learning in science and technology of by increasing the number of early childhood and primary teachers who are effective educators. PECSTEP is based on an interactive model of teaching and systematically links work on gender with the learning and teaching of science and technology. The project involves: a year-long inservice program which includes the development of a science curriculum unit by teachers in their schools; linking of the preservice and inservice programs; and the development of support networks for teachers. Each phase of PECSTEP has been researched by means of surveys, interviews and the use of diaries. Research questions have focussed particularly on changes in: teachers’ and student teachers’ attitudes to teaching science and technology; their perceptions of science and technology; their perceptions of their students’ responses and their understandings of how gender relates to these areas. Specializations: primary science curriculum, science teacher education, sociology of science, technology and education. Specializations: gender and science/science teacher education, feminist theory, curriculum theory. Specializations: Science education research, curriculum development.  相似文献   

15.
Existing instruments in classroom environment research have limitations when subgroups are investigated or case studies of individual students conducted. This study reports the validation and development of a personal form of the Science Laboratory Environment Inventory which is better suited to such studies. Further, systematic differences between scores on the class and personal forms of the instrument are reported along with comparisons of their associations with inquiry skill and attitudinal outcomes. Specializations: Science education, Preservice science teacher education. Specializations: Learning environments, science education, educational evaluation, curriculum. Specializations: Curriculum, science education, science laboratory teaching.  相似文献   

16.
Preparing student teachers to teach thoughtfully and to consider carefully the consequences of their work involves creating opportunities for these beginning teachers to learn the skills and attitudes required for reflective practive. The case study described here explores one model of developing reflective practice and the congruent role that the source and use of knowledge of good teaching practice has in the process of developing the reflective practices of a post-graduate pre-service science teacher. Of particular interest are the facilitators and barriers she sees as affecting this development. Specializations: Science education, science teacher education Specializations: science education, science teacher education, conceptual change, learning environments, science reasoning.  相似文献   

17.
This paper reports on a study of the mismatch between science teachers' stated purposes and their actual teaching of science in a secondary school. Factors affecting teachers' practices include their personal beliefs about teaching, learning and the purposes of science education, the school program and the school culture. Specializations: science and technology education, professional development.  相似文献   

18.
This paper describes research into teachers' perceptions of technology education carried out as part of the Learning in Technology Education Project. Thirty primary and secondary school teachers were interviewed. Secondary teachers interpreted technology education in terms of their subject subcultures as did some primary teachers. The primary teachers were also influenced by current initiatives, outside school interests and teaching programs. Specializations: investigations in science, science and technology education. Specializations: learning theories, history and philosophy of science, chemical education.  相似文献   

19.
The study attempts to identify the factors which affect teacher's reluctance to teach science, then explains an approach to help teachers teach science in a worthwhile manner over the school year while monitoring any changes in their confidence and competence. It was found that the condidence and competence of the teachers improved during the year such that they were able to teach successful science lessons on a regular basis. Specializations: primary science and technology education, curriculum development and implementation, teacher education. Specializations: primary science curriculum, early childhood education, gender and science. Specializations: primary science and technology education, issues related to girls in science and technology.  相似文献   

20.
As there is nothing as practical as a good theory, there is a continuing need in the field of science education enquiry to look for theories which help to interpret the findings about students' alternative frameworks and to inform the design of teaching strategies which relate to a research focus on ‘how the student learns’. The developmental model of cognitive functioning based on the SOLO Taxonomy (Biggs & Collis, 1982) as updated in 1991 (Biggs & Collis, 1991; Collis & Biggs, 1991) is being applied in this way. Questionnaire data from two large studies of science learning of Australian students (conducted by ACER and NBEET) are being re-analysed in terms of the current theory. This paper illustrates the theory and describes a plan of further research. Specializations: science education, students' understandings of phenomena in science. Specializations: cognitive development, evaluation, mathematics and science education. Specializations: mathematics education, students' understanding of chance and data concepts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号