首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
1 问题的提出引例 已知椭圆 x249+y23 6=1上一点 M与椭圆两焦点 F1 、F2 连线的夹角∠ F1 MF2 =90°,试求 Rt△ F1 MF2 的面积 .我们把这种由椭圆或双曲线上的一点 M与其两个焦点 F1 、F2 所构成的△ F1 MF2 称作焦点三角形 .略解如下 :由 |MF1 |+|MF2 |=14与 |MF1 |2 +|MF2 |2 =5 2可得 |MF1 ||MF2 |= 72 ,所以 S△ F1MF2 =3 6.2 问题的推广我们把引例中的∠ F1 MF2 =90°改为∠ F1 MF2 =θ,并考虑分别求关于椭圆与双曲线的这种焦点三角形的面积 ,可得如下结论 .结论 1 如果椭圆 x2a2 +y2b2 =1( a >b >0 )上一点 M与两…  相似文献   

2.
本文介绍椭圆和双曲线切线的一个有趣性质 ,并说明其应用 .定理 经过椭圆 b2 x2 a2 y2 =a2 b2 (a>b>0 )或双曲线 b2 x2 - a2 y2 =a2 b2 (a>0 ,b>0 )的长轴或实轴两端点 A1 和 A2 的切线 ,与椭圆或双曲线上任一点的切线相交于 P1 和P2 ,则 |P1 A1 |· |P2 A2 |=b2 .证明 椭圆上任一点 P(acosθ,bsinθ)处的切线方程为 b2 ·acosθ· x a2 · bsinθ·y=a2 b2 即bcosθ·x asinθ·y- ab=0 .1又知点 A1 (- a,0 )和 A2 (a,0 )处的切线方程分别为 x=- a和 x=a,将它们分别与1联立解得 |P1 A1 |=|y P1|=b|1 cosθsinθ |,|P2 A2 |=|y P…  相似文献   

3.
本文介绍椭圆与双曲线的一个有趣性质,并说明其应用. 性质 1 设P点是椭圆b2x2+a2y2+a2b2(a>b>0)上异于长轴端点的任一点,F1,F2为其焦点,记∠F1PF2=θ,则|PF1|·|PF2|=2b2/1+cosθ 简证:由椭圆定义有|PF1|+|PF2|=2a (1) 在△PF1F2中,由余弦定理有 |PF1|2+|PF2|2-2|PF1|·|PF2|·cosθ=4e2 (2) (1)2-(2)化简得 |PF1|·|PF2|= 2b2/1+cosθ 性质2 将性质1中的 b2x2+a2y2=a2b2改为b2x2-a2y2=a2b2(a>0,b> 0),其余不  相似文献   

4.
问题 :已知椭圆 x22 5 +y216 =1的左右焦点分别是 F1 ,F2 ,点 M在椭圆上 ,且 M到两焦点的距离之积为 16 ,则 M的坐标为    .题目本身并不难 ,由椭圆定义知 |MF1 |+|MF2 |=2 a=10 ,又由条件知 |MF1 |·|MF2 |=16 ,于是 |MF1 |=2 ,|MF2 |=8或|MF1 |=8,|MF2 |=2 .又椭圆的焦点到长轴两个端点的距离恰为 2与 8,因此 M是长轴的两个端点之一 ,于是 M的坐标应是 (- 5 ,0 )或 (5 ,0 ) .一个疑问 :长轴的两个端点固然满足条件 ,但除了这两个端点以外还有没有其它满足条件的点呢 ?上述解法并没有给出确切的答案 ,因此严格地说上述解法是…  相似文献   

5.
设P(x0,y0)是椭圆x2/a2+y2/b2=1(a>b>0)上的点,F1、F2为其左、右焦点.由椭圆第二定义易得|PF1|=a+ex0,|PF2|=a-ex0(e为离心率).这就是椭圆的焦半径公式,运用它可解决与焦点三角形有关的问题. 1.求坐标取值范围  相似文献   

6.
有一次某中学数学教师到象山中学参观指导 ,教研组让我上一堂公开课“椭圆的标准方程”,我的教学过程设计如下 :第一步板书得出 :集合 P={ M||MF1 |+|MF2 |=2 a} .由 |MF1 |=(x+c) 2 +y2 ,|MF2 |=(x- c) 2 +y2 ,得方程(x+c) 2 +y2 +(x- c) 2 +y2 =2 a,(1)移项两边平方得a2 - cx=a (x- c) 2 +y2 ,(2 )两边再平方得(a2 - c2 ) x2 +a2 y2 =a2 (a2 - c2 ) ,(3)设 a2 - c2 =b2 ,整理得x2a2 +y2b2 =1(a>b>0 ) . (4 )第二步在式 (2 )的变形中 ,得出椭圆的第二定义 (x- c) 2 +y2a2c- x=ca,得出椭圆的焦半径公式 ,最后用例题巩固 .自认为这样处…  相似文献   

7.
本文介绍椭圆与双曲线的一个有趣性质,并说明其应用. 性质 1 设P点是椭圆b2x2+a2y2=a2b2(a>b>0)上异于长轴端点的任一点,F1、F2为其焦点,记∠F1PF2=θ,则|PF1|·|PF2|=2b2/1+cosθ 简证:由椭圆定义有|PF1|·|PF2|=2a (1) 在△PF1F2中,由余弦定理有|PF1|2+|PF2|2-2|PF1|·|PF2|cosθ=4c2 (2) (1)2-(2)化简得  相似文献   

8.
我们把连接圆锥曲线的焦点与曲线上任一点的连线段称为它们的焦半径,根据圆锥曲线的统一定义,很容易推导出圆锥曲线的焦半径公式.下面是用得较多的焦半径公式: (1)对于椭圆x2/a2 y2/b2=1(a>b>0)而言.|PF1|=a ex0,|PF2|=a-ex0. (2)对于双曲线x2/a2-y2/b2=1(a>0,b> 0)而言,|PF1|=ex0 a,|PF2|=ex0-a. (3)对于抛物线y2=2px(p>0)而言, |PF|=x0 p/2.  相似文献   

9.
错在哪里     
1题已知椭圆 x29 y25 =1 ,点A(1 ,2 )在椭圆内 ,点F是椭圆的左焦点 ,点M是椭圆上任意一点 ,求|MA| |MF|的最小值。解 由方程知a =3 ,c=2 ,e=23 ,左准线l:x =-92 。设M在l上的射影为N ,由圆锥曲线的统一定义 ,|MF|=23 |MN|,|MA| |MF|=|MA| 23 |MN|,所以当M、A、N共线时 ,取最小值。将 y =2代入椭圆方程得x =-3 55 ,此时 |MA| 23 |MN|=(1 3 55 ) 23 (92 -3 55 ) =4 55 ,所以|MA| |MF|的最小值为 4 55 。解答错了 !错在哪里 ?事实上 ,|MA| 23 |MN|=23 (32 |MA| |MN|) ,其中 |MA|的系数是 32 ,而 |MN|的系数是1 ,可见 |MA…  相似文献   

10.
性质 椭圆的中心到对中心张直角的弦的距离为一定值 .具体对椭圆 x2a2 y2b2 =1来说 ,直线 PQ交椭圆于 P,Q两点 ,且 OP⊥ OQ,O到 PQ的距离为 d,则 d2 =a2 b2a2 b2 .证明 设 OP:y=kx,将它代入椭圆方程 x2a2 y2b2 =1 ,得( b2 a2 k2 ) x2 =a2 b2 ,∴ x2 =a2 b2b2 a2 k2 .| OP| 2 =x2 y2 =( 1 k2 ) x2 =a2 b2 ( 1 k2 )b2 a2 k2 .用 - 1k代 k得 | OQ| 2 =a2 b2 ( 1 k2 )b2 k2 a2 ,∴ 1| OP| 2 1| OQ| 2=b2 a2 k2a2 b2 ( 1 k2 ) b2 k2 a2a2 b2 ( 1 k2 ) =a2 b2a2 b2 .而 d=| OP|× | OQ|| PQ| ,…  相似文献   

11.
1·已知a,b为正实数,且满足a+b=2.(1)求1+1a+11+b的最小值;(2)猜想1+1a2+1+1b2的最小值,并证明;(3)求1+1an+1+1bn的最小值;(4)若a+b=2改成a+b=2p(p≥1),猜想1+1an+1+1bn的最小值.2·已知某椭圆的焦点是F1(-4,0),F2(4,0),过点F2并垂直于x轴的直线与椭圆的一个交点为B,且|F1B|+|F2B|=10,椭圆上不同的两点A(x1,y1),C(x2,y2)满足条件|F2A|,|F2B|,|F2C|成等差数列.(1)求该椭圆的方程;(2)求弦AC中点的横坐标;(3)设弦AC的垂直平分线的方程为y=kx+m,求m的取值范围.3·设曲线C:y=x2(x>0)上的点P0(x0,y0),过P0作曲线C的切线与x轴交于Q1,过Q…  相似文献   

12.
各种数学资料中 ,经常出现如下一类问题 :点 M为圆锥曲线上一动点 ,求它到圆锥曲线的一个焦点 F和平面上一定点 A的距离和的最值 .大多数学生对这类问题感到困难 ,不知如何入手 .本文利用圆锥曲线的定义巧妙地求出这类问题 .1 椭圆、双曲线、抛物线中的有关结论1.1 椭圆结论 1 设椭圆 x2a2 + y2b2 =1(a >b>0 )的左、右焦点分别为 F1 、F2 ,平面上一定点 Q(x0 ,y0 ) ,M为椭圆上任意一点 .(1)定点 Q(x0 ,y0 )在椭圆内部 (即 x20a2 + y20b2<1) ,则 | MF2 | + | MQ|的最小值是 2 a -| QF1 | ;最大值是 2 a + | QF1 | .(2 )定点 Q(x0 ,…  相似文献   

13.
《考试说明》要求考生:1掌握椭圆、双曲线、抛物线的定义、标准方程及其几何性质和椭圆的参数方程;2掌握圆锥曲线的初步应用.下面介绍圆锥曲线基础试题的考点和解析.考点1 求椭圆坐标的取值范围例1 (2000年新课程卷高考题)椭圆x29+y24=1焦点为F1和F2,点P为椭圆上的动点.当∠F1PF2为钝角时,点P的横坐标的取值范围.解析:设P(x0,y0)是曲线x2a2±y2b2=1上的一点,则|PF1|=|a+ex0|,|PF2|=|a-ex0|(e为离心率,F1、F2为左、右焦点).运用焦半径公式可简捷地解决与焦点三角形有关的问题.解:a=3,b=2,c=5.设P(x,y),由焦半径公式知|PF1|=3+53x.|…  相似文献   

14.
最近笔者对椭圆和双曲线作了些研究,得到了一个十分新颖有趣的性质,现说明如下. 定理1 设椭圆b2x2 a2y2=a2b2(a>b>0)的两条准线和x轴相交于E1和E2,点P在椭圆上,∠E1PE2=α,e是离心率,c为半焦距,则α为钝角,且当e2≥1/2((?)5-1)时有cotα≤-e,当且仅当|yp|=ab2/c2时等号成立.  相似文献   

15.
椭圆x2/a2 y2/b2=1(a>b>0)中除长轴两端点外的任一点P(x1,y1)与两焦点F1(-c,0)、F2(c,0)所组成的三角形PF1 F2叫做焦点三角形 .焦半径|PF1|=a ex1,|PF2|=a-ex1.焦点三角形具有不少有益的结论,而对这些结论的证明亦颇有启迪性;并且这些结论在解题中也能起到不少帮助. 1.△PF1F2的周长为定值. 这个结论显而易见.由椭圆定义知|PF1| |PF2|=2a,而|F1F2|=2c,因此这个定值为2a 2c.  相似文献   

16.
设椭圆(x2)/(a2) (y2)/(b2)=1(a>b>0)的左右焦点分别为F1,F2,点P(x0,y0)是椭圆上的任意一点,且椭圆的离心率为e,则有|PF1|=a ex0,|PF2|=a-ex0(*),(*)式可由椭圆的第二定义很快证到,通常称之为椭圆的焦半径公式.……  相似文献   

17.
刘宜兵 《数学教学通讯》2006,(4):F0003-F0003
我们知道:过圆外一点向圆引两条切线,这两条切线的长度相等并且该点与圆心的连线平分以圆心为顶点两切点为端点的角.仿照这个性质我们推广到其他圆锥曲线(椭圆、双曲线、抛物线)可得以下优美结论.定理1:过椭圆xa21 by22=1(a>0,b>0)外一点P(m,n)向椭圆引两切线PP1,PP2,F是椭圆的任一个焦点,则①|PP|1|P·F||P2P2|=b2m2a2 b2a2n2;②PF平分∠P1FP2.图1证明:如图1,设P1(x1,y1),P2(x2,y2),显然直线P1P2方程为:mxa2 nby2=1,由mxa2 nby2=1x2a2 yb22=1可得:(a2n2 b2m2)x2-2a2b2mx a4(b2-n2)=0则x1 x2=a2n22a2 b2bm2m2,x1x2=aa24(nb22 -b2nm…  相似文献   

18.
本文探索了椭圆、双曲线焦半径与焦半径夹角的关系,得到如下两个结论. 定义圆锥曲线上一点与其焦点的连线段叫做焦半径. 定理1 P(x0,y0)是椭圆x2/a2 y2/b2=1(a>b>0)上一点,F1(-c,0),F2(c,0)是左右焦点,设|PF1|=r1,|PF2|=r2,∠F1PF2=θ,则 2b2/1 cosθ=r1r2,且tanθ/2=c|y0|/b2. 证:如图,在△F1PF2中有  相似文献   

19.
例直线l:y=-1/2x 2与椭圆(x2)/(a2) (y2)/(b2)=1交于A、B两点,O为坐标原点,M为线段AB的中点.若|AB|=5~(1/2),直线OM的斜率为1/2,求椭圆的方程.  相似文献   

20.
【题】 :过双曲线x2 - y22 =1的右焦点作直线l交双曲线于A、B两点 ,若|AB|=4 ,则这样的直线共有 (   ) .A .1条    B .2条C .3条  D .4条正确答案是C .对该题进一步的探讨分析发现 ,此双曲线的实半轴a =1,虚半轴b =2 ,过焦点与x轴垂直的弦长为2b2a =4 ,|AB|=2b2a =4 >2a =2 .试问 :|AB|无论多长答案是否都是C呢 ?请看 :设双曲线 x2a2 - y2b2 =1(c =a2 b2 )的右焦点为F ,过F作直线l交双曲线于A、B两点 ,|AB|=d ,试根据d的不同取值讨论l的存在性 .预备知识 :(1)两顶点间的距离是双曲线两支上的两点间距离的最小值 ;(2 )过双…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号