首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
一、引言 美国著名运动生理学家爱德华·福克斯在其所著《运动生理学》一书的序言中曾指出:“在科学应用于体育,其最有价值的部分可能要算是人体的能量供应了。”众所周知,ATP是肌肉活动的直接能源。人体供应ATP的途径有三种,即无氧非乳酸(ATP—CP)能量系统、无氧糖酵解或乳酸能能量系统和有氧氧化能量系统。大量科学研究表明,不同的运动项目的能量供应途  相似文献   

2.
谈篮球运动员的能量供应及训练   总被引:1,自引:0,他引:1  
1 篮球运动员能量的供应篮球运动是个大强度运动,也是复杂而多变的运动,大强度工作时,需要无氧代谢供能。大强度工作后,CP恢复和乳酸消除的快慢又取决于肌肉的有氧代谢水平。所以篮球运动既包括无氧代谢供能,又包括有氧代谢供能,且无氧代谢占的比重大。据统计,一般在85%以上。人体运动的直接能源物质是ATP,人体肌肉中所含ATP的量是很少的,如果不经再合成供给,剧烈运动6~10秒钟,就会接近耗尽。篮球比赛时间长,强度大,能量的来源也是靠ATP的再合成。通过运动ATP水解、释放能量、生成ADP和无机磷酸盐,然后再通过吸收一部分能量,将ADP…  相似文献   

3.
羽毛球比赛时运动员的能量代谢方式是无氧、有氧混合型供能,因此,在比赛中应合理调动磷酸原、糖酵解和有氧氧化三大供能体系,掌握主动,才能赢得比赛。1.人体运动的能量代谢的供能特点骨骼肌活动时能量的直接来源是三磷酸腺苷(ATP),ATP水解成ADP和磷酸,同时释放出能量(ATP H2O─→ADP Pi 能量),该能量就是骨骼肌收缩所需的能量来源。而骨骼肌中ATP的储备量很少,供能时间仅仅为6~8秒钟。肌细胞中ATP的储备少,而肌细胞又不能从血液或其它组织中直接获取ATP,因此从能量的观点来看,运动中ATP消耗后的恢复速度是影响运动能力的最重要…  相似文献   

4.
一般认为,400米跑的能量系统主要来源于无氧供能系统。因此,最佳运动能力的训练在很大程度上依赖于无氧能量系统的发展,而该系统包括两个亚系统。在无氧非乳酸系统中,一种称之为磷酸肌酸(CP)的高能化合物及时地提供了一种能源,用于三磷酸腺苷(ATP)的再合成。在训练中,这个过程是指在持续7秒的时间里快速地重复跑。  相似文献   

5.
本文采用文献资料法和实验法研究了运用短时间歇训练法运动时,机体的能源供给主要来源ATP~CP和有氧供能的能量;机体承受负荷时的能源供给以ATP~CP代谢为主,负荷后的间歇期里ATP~CP的恢复主要依靠有氧代谢供给能量。对于适合短时间歇运动项目的运动员,发展其有氧能力比发展无氧能力更为重要。提高运动员以磷酸盐系统代谢的速度耐力性为特征的运动能力,可以采用短时间歇训练法。  相似文献   

6.
疲劳是指由于活动使工作能力及身体机能暂时下降的现象。疲劳的生物化学,一直是运动医学的一个重要研究课题。通过生化研究,人们知道机体活动所需的能量及其来源的营养物质,是以高能磷酸键的形式存在于 ATP 分子中,即由 ATP 供给的。ATP 的补充由三个系统来进行:第一个系统是磷酸原系统;第二个系统是糖的无氧酵解系统;第三个系统是糖、脂肪、蛋  相似文献   

7.
能量连续统一体是指人体在运动中利用ATP的产生途径与完成体育活动类型的关系。运动时能量需求主要来源于ATP,ATP的供给有三种系统。三种系统的供能方式、时间功率不同,但它们是连续统一的一个整体。在这个整体中所有的田径项目都有其特定的生化位置,正确地运用每个特定位置,是我们制定田径训练计划必不可少的先决条件。以下是笔者关于运动与能量连续统一体的一些认识。一、运动时的能量供应体系体育运动中能量ATP的供应主要来源于磷酸原贮备(ATP—CP)、糖酵解(LA)、有氧氧化(O_2)三个系统。三个系统分别参与供能。图1简单地表示了能量供应体系及组  相似文献   

8.
在运动过程中,肌肉活动所需要的能量主要借有氧和无氧两种代谢方式提供,其中供能最多的是有氧代谢,其次是无氧代谢,它们所提供的能量成为合成ATP的动力。在有氧代谢过程中氧化一克分子葡萄糖可合成38克分子的ATP,是无氧代谢所提供能量的近20倍。但是,随着运动强度的提高,即使在吸氧量同时增加的情况下,体内也还会出现相对地缺氧状态,缺氧越深,无氧酵解过程也就越发挥作用,从而无氧酵解的最终产物——乳酸  相似文献   

9.
人体在激烈运动时,肌肉能量需求比安静时增加约120倍,为了满足运动时的能量需求,使得某些代谢过程在激烈运动时十分重要,甚至占支配地位,如200米跑,95%左右的能量来自无氧代谢。众所周知,人体组织细胞中包含有氧和无氧两个体系,包括三个、供能系统,即磷酸原供能系统(ATP-CP系统)、无氧糖酵解供能系统、有氧氧化供能系统。这三个供能系统并不是各自独立的,而是紧密相联、互相协调、共同组成的一个完整能量供应体系。供能系统供能能力强弱,决定着运动水平的高低。因此,教练员在制订训练计划时首先应明确所训练的运动项目、专项中主要的供能系统,然后选取科学的训练方法,发展该系统的供能能力。  相似文献   

10.
在近代科学训练中,能源理论被认为是重要的生理学依据之一.田径运动中不同项目训练内容、训练手段的选择,到训练强度、持续时间及恢复过程的合理安排等方面,都与能源理论有密切关系.近年来,我应用运动中能量代谢的有关理论指导校田径队短跑组的训练,收到了较好的效果,全组八名队员运动成绩都有不同程度的提高.运动中肌肉活动的直接能量是由磷酸化合物ATP分解供给的,但是肌肉中ATP的储量极为有限.它在不断分解的过程中必须不断重新合成,才能保证肌肉的持续收缩.ATP的重新合成所需的能量是由三个途径供给的.第一条途径是通过磷酸肌酸(CP)分解,进行无乳酸无氧供能,但体内的CP也极有限,与ATP一起供能只能维持7.7秒;第二条途径是通过糖元在无氧条件下酸解,进行乳酸无氧供能.但这一途径能量  相似文献   

11.
<正>1 400米跑的能量供应速度耐力在400米跑中是非常重要的,运动生理学书中指出:速度耐力素质的物质基础是无氧酵解,在400米跑中有88%左右的能量是依靠无氧酵解供给的,其中又有80%是糖元无糖分解供给。这是因为:在快速跑的过程中能量的直接来源是ATP的分解,但是肌肉中的ATP的储存较少,比较边分解在合成才能维持肌肉的活动。但是为了维持长时间的快速运动,仅依靠  相似文献   

12.
女子曲棍球运动员专项体能训练方法的探讨   总被引:2,自引:0,他引:2  
曲棍球运动是以速度为主,兼有速度耐力和耐力性的项目。运动生物化学的研究表明,ATP—CP供能系统贮备的能量在理论上可维持最大强度运动6秒~8秒。虽然曲棍球运动员在比赛时持续活动的时间主要分布在10秒以内、11秒~20秒和27秒~40秒的时间区间,从供能特点来看,主要是无氧代谢  相似文献   

13.
运动生理学的研究证明,人体运动的直接能源来自ATP(三磷酸腺苷)。运动中所需的ATP 取决于人体能量代谢系统的供能能力,即取决于三种供能系统: ATP-CP系统,也就是非乳酸供能系统;无氧糖酵解系统,也就是乳酸供能系统;有氧供能系统。这三个供能系统并不是互不相关各自独立的, 而是紧密相连,互相协调,共同组成一个完整的能量供应体系。无氧代谢过程中所产生的乳酸要靠有氧代谢来清除,否则,机体就会由于乳酸的堆积,而引起酸中毒,这样就难以维持高强度的运动,也就是说速度耐力难以体现出来。同时,有氧代谢能力越强,运动员的机体恢复得越快,这种恢复不仅仅体现在运动后的恢复,而且还应该包括运动过程中的恢复。机体得到了恢复, 运动员才能承受更大的运动负荷刺激,而建立新的新陈代谢平衡,从而取得好成绩。人们已经认识到三个供能系统的作用,但是,对于这几个系统在训练过程中的相互作用,特别是有氧供能系统的重要作用存在一些不同的认识。  相似文献   

14.
人体进行短时间高强度运动时所需的能量主要来自于无氧氧化供能系统即ATP-CP的分解供能和糖元的无氧酵解供能。测定短时间高强度运动时  相似文献   

15.
<正>无氧能力是指运动中人体通过无氧代谢途径提供能量进行运动的能力,由ATP-CP分解供能(非乳酸能)和糖无氧酵解供能(乳酸能)。ATP-CP是无氧功率的物质基础,一切短时间、高功率运动(如冲刺、短跑、投掷、跳跃和足球射门等)均取决于ATP-CP供能的能力。一、提高无氧工作能力的训练提高无氧工作能力的训练主要有以下两种:(一)发展ATP-CP供能能力的训练(主要采用无氧低乳酸的训练)1.最大速度或最大练习时间不超过10秒。2.每次练习的休息间歇不能短于30秒,这是因为,短于30秒时ATP—CP在运动间歇中的恢复数量不足以维持下一次练习对能量的需求,故间歇时间一般长于30秒,60秒或90秒的效果更好。  相似文献   

16.
1.中跑运动的能量来源 根据不同运动项目的有氧供能(aerobic ficenergy)和无氧供能(anaerobic energy)的百分比协),可以确定它们在能量连续统一体中相应的位置。在能量连续统一体的一端,如100m跑,能量主要来源于ATP—CP系统;在另一端,如马拉松跑,能量主要来源于有氧氧化系统;存它们之间的运动,除乳酸系统供能外,至少有另一系统以一定的比例为运动提供能量。这种不同运动项日的能量供应特异性就决定了不同运动项目的训练特点。中跑是周期性运动中的亚极量运动,它包括800m和1500m跑等项目。[第一段]  相似文献   

17.
人体的运动能力,在很大程度上取决于人体内能源物质提供能量的能力。这些能源物质有高能磷化物(如ATP、CP)、糖、脂肪和蛋白质等。根据它们代谢产生能量的特点,可分为无氧及有氧代谢两大过程。其中可分为三大能源系统:即非乳酸系统(ATP—CP系统)、乳酸能系统(糖酵解系统)和有氧氧化系统(糖、脂肪和蛋白质氧化系统)。前两大系统属于无氧代谢过程的两个环节;后一系统属于有氧代谢过程。它们均可在不同条件下,根据肌肉活动的性质进行分解释放能量,供人体活动需要。但这三大能源系统的供能是相互联系不可分割的统一体,具有偶联反应的特点。同时,由于人体内的能源物质受细胞内代谢系统  相似文献   

18.
短跑是一种极限强度运动。从短跑的生物化学过程来看,决定能量供应的是三磷酸腺苷(ATP)、磷酸肌酸(CP)、糖和脂肪等物质的含量。因此,努力发展机体在无氧状态下的协调工作能力,是促进短跑速度和速度耐力的重要手段之一,  相似文献   

19.
生理因素运动员参加运动训练和体育比赛时,肌肉所需要的能量来源主要有三种途径,它们可供运动员从事不同距离、不同程度的运动项目的比赛和训练。 1、三磷酸腺苷和磷酸肌酸(ATP—GP系统)。是短跑运动最直接的能量来源。这种能量只能供运动员进行大约30秒钟的练习。  相似文献   

20.
<正>一、短跑运动的代谢反应短跑运动是一种高强度的运动,这种类型的运动只能维持很短的时间。它的能量供应主要来源于糖的无氧酵解系统,能量供应是在缺氧的情况下完成的。经过研究测定:男子短跑选手在40米、60米、80米、100米全速跑前后的肌肉中ATP、磷酸肌酸和乳酸浓度变化。在40米、60米、80米跑中,最快的短跑选手利用磷酸肌酸量最大,大部分磷酸肌酸在运动的前5~6秒就消  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号