首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
由向量基本定理可以得到 :设OA、OB是平面内两个不共线向量 ,则A、B、C三点共线的充要条件是存在唯一的一对实数x ,y ,使得OC =xOA+yOB且x+y =1.设OA、OB、OC是空间不共面的向量 ,则A、B、C、D四点共面的充要条件是存在唯一的一组实数x、y、z ,使得OD =xOA +yOB +zOC且x +y+z =1.用好这两个充要条件 ,在证明有关问题时可省去很多证明过程 .例 1 已知OA =a ,OB =b,OC =c ,OD=d ,OE=e.又O、A、B不共线 ,如果a=3c,b =2d ,e=t(a+b) .试问 :t为何值时 ,C、D、E三…  相似文献   

2.
人教版高中数学新教材第二册 (下B)综合运用几何推理和向量运算的方法研究立体几何问题 .用向量方法处理立体几何问题在某些方面较几何推理方便、简洁 .下面就举例谈谈用共面向量定理在处理关于共面问题上的优越性 .为方便起见 ,我们先介绍一下共面向量定理及其一个推论 .共面向量定理 :如果两个向量a、b不共线 ,则向量p与向量a、b共面的充要条件是存在实数对x、y ,使p =xa+ yb .由上述定理易证它的一个推论 :对空间任一点O和不共线的三点A、B、C ,若有OP=xOA + yOB +zOC ,则P在平面ABC内的充要条件为x+y…  相似文献   

3.
新版高一《数学》下册第五章平面向量第三节“实数与向量的积”一节中 ,介绍了平面向量基本定理 :如果e1、e2 是同一平面内的两个不共线向量 ,那么对于这一平面内的任何一个向量 a ,有且只有一对实数λ1、λ2 ,使 a=λ1e1+λ2 e2 (此时 ,e1、e2 叫该平面内所有向量的一组基底 ) .         图 1这个定理的证明可从以下两个方面考虑 :(1)任给两个不共线向量e1、e2 ,则可表示出向量 =λ1e1+λ2 e2 (λ1、λ2 ∈R) ;(2 )对于平面内的任一向量 a ,都可以用该平面内的不共线向量e1、e2 来表示 .对于(1) ,由实数与向量…  相似文献   

4.
向量共线的充要条件是由实数与向量的积推出的,它是平面向量的基本定理的一种特殊情况,具体内容为:向量b与非零向量a共线的充要条件是有且只有一个实数λ,使得b=λa, 由于零向量与任一向量共线,故上述定理又可叙述为向量b与向量a共线的充要条件是:存在不全为0的实数λ1, λ2, 使得λ1a+λ2b=0, 它的逆否命题为:若向量a, b不共线,(a≠0, b≠0),且λ1a+λ2b=0, 则λ1=λ2=0,这些结论可用来证明几何中三点共线与两直线平行等问题.举例说明如下:  相似文献   

5.
先介绍以下结论 :如果a =(a1 ,a2 ,a3) ,b =(b1 ,b2 ,b3)为平面α上的两个不共线向量 ,又n =(x ,y,z) ,且n·a=a1 x +a2 y +a3z =0 ,n·b =b1 x+b2 y+b3z=0 ,则n⊥平面α ,向量n叫做平面α的法向量 .利用平面α的法向量n,可解决立体几何中有关线面夹角、线面垂直、面面垂直、求二面角的大小和求点到平面的距离等问题 ,且思路清晰 ,解题快捷、准确 .以下举例说明它的应用 .一、直线与平面垂直要证直线与平面垂直 ,只要直线上的向量与该平面的法向量平行即可 .例 1 在棱长为 1的正方体ABCD -A1 B1 C1 …  相似文献   

6.
命题 设△ABC的面积为△ ,三边长分别为a、b、c.则△ABC的内接正三角形的最小面积为 △236(a2 +b2 +c2 ) + 2△.图 1证明 :如图 1所示 ,正△PQR内接于△ABC ,BC =a ,CA=b ,AB =c.设∠BRP =θ,则易求得∠PQC =∠A+ 60° -θ .再设△PQR的边长为x ,则分别在△BRP和△PQC中 ,由正弦定理可得BP =sinθsinBx ,PC =sin(∠A + 60°-θ)sinC x.又因BP +PC =BC =a ,故x = asinθsinB+sin(∠A +6 0° -θ)sinC=asin(∠A +6 0°)sinC ·cosθ+…  相似文献   

7.
定理 1 设x为实变量 ,a、b为实数 (a≥ 0 ,且a、b不同时为零 ) ,则下列公式成立 :  ∫+∞0 e (a+bi)x2 dx =12πa2 +b2a +a2 +b22 bi2 a+a2 +b22(1)证明 :图 1(b<0 )     图 2 (b >0 )由于e (a+bi)Z2 为复平面上的解析函数 ,取图1(当b <0时 )或图 2 (当b>0时 )的闭曲线l,按柯西 (Cauchy)积分定理 ,有∮le (a+bi)Z2 dZ =0设A =a +a2 +b22 , B =b2A =b2 a+a2 +b22,则C-3 :Z=(A Bi)t  (0≤t≤ RA) ,这里C-3 的方向与C3 的方向相反 ,t为实参数 ,不难求得Z2…  相似文献   

8.
<正>在人教版高中数学新教材第二册(下B)中介绍了空间向量的共线定理:对空间任意两个向量a,b(b≠0),a与b共线的充要条件是存在唯一实数λ,使得a=λb.由这个共线定理,我们可以推导出它的一个推论:设OA,OB是平面内不共线的两个向量,则点A,B,P三点共线的充要条件是存在唯一的一对实数x,y,使得OP=xOA+yOB(x+y=1).在近几年的高考备考中,发现有不少的题目,如果能够充分用好这个共线定理的推  相似文献   

9.
第 一 试一、选择题 (每小题 7分 ,共 4 2分 )1.已知 a3+b3+c3- 3abca +b +c =3.则(a -b) 2 +(b -c) 2 +(a -b)·(b-c)的值为 (   ) .(A) 1    (B) 2    (C) 3    (D) 42 .规定“△”为有序实数对的运算 ,如下所示 ,(a ,b)△ (c,d) =(ac +bd ,ad +bc) .如果对任意实数a、b都有 (a ,b)△ (x ,y) =(a ,b) ,则 (x ,y)为(   ) .(A) (0 ,1)  (B) (1,0 )  (C) (- 1,0 )  (D) (0 ,- 1)3.在△ABC中 ,2a=1b+1c.则∠A(   ) .(A)一定是锐角 (B)一定是直角(C)一定是钝角 …  相似文献   

10.
定理 设两条异面直线a ,b所成的角为θ ,由b上两点A ,B引a的垂线 ,垂足分别是A1,B1.则cosθ=A1B1AB . ( )     图 1  证 若A1,B1是相异两点 ,如图 1,过A作,连B1C和BC ,则B1C ∥AA1.∵AA1⊥a ,∴a⊥B1C .又a⊥BB1,∴a⊥平面BB1C ,故AC⊥BC .在Rt△ABC中 ,∠BAC =θ ,cosθ=ACAB,从而cosθ =A1B1AB .若A1,B1两点重合 ,易知a⊥b ,显然等式cosθ=A1B1AB 成立 .于是定理获证 .下面举例说明定理在解题中的应用 .例 1 如图 2 ,在长方体AC1中 ,AB =4 ,…  相似文献   

11.
高中数学第二册 (上 ) (试验修订本 ·必修 )P9给出均值不等式定理的一种几何解释 ,这同时也提供了一种证明不等式的方法—几何法 .这种方法是通过把不等式中的数式看作线段的长或图形的面积 ,直观地比较出其大小达到证明目的 .本文给出课本例 (习 )题中几个不等式的几何证明 .例 1 已知a、b都是正数 ,求证21a +1b≤ ab≤ a+b2 ≤ a2 +b22 ,当且仅当a =b时等号成立 .证法 1 当a =b时等式等号显然成立 ;当a≠b时 ,在长为a+b的线段AB上取点C(如图 1 ) ,使AC =a ,CB =b(其中a>b) .以AB为直径画圆O ,过O、…  相似文献   

12.
新版高一数学 (下册 )第五章第三节《实数与向量的积》中 ,介绍了平面两个向量共线定理 :向量 b与非零向量 a共线的充要条件是有且只有一个实数λ,使得b =λa.由此 ,可以得到下列推论 :推论 1   OA、OB是平面内两不共线向量 ,向量OP满足 :OP =a OA +b OB( a,b∈ R) ,则 A、P、B三点共线的充要条件是 a +b =1.证明 :( 1)若 a +b=1,则 A P =OP - OA =( a -1) OA +b OB =b( OB - OA ) =b AB,故 AP与 A B共线 ,从而 A、P、B三点共线 ;( 2 )若 A、P、B三点共线 ,则存在唯一实数λ,使得AP =λAB,即 OP - OA =λ( OB - OA …  相似文献   

13.
一、选择题 (每小题 6分 ,共 3 6分 )1 若x -2 +y +3 =0 ,则 yx 的值是 (   ) .(A) 32       (B) 23       (C) -32        (D) -232 若a、b为实数 ,则下列命题中正确的是 (   ) .(A)a >b a2 >b2 (B)a≠b a2 ≠b2(C) |a|>b a2 >b2 (D)a >|b| a2 >b23 若关于x的二次方程 (b -c)x2 +(a -b)x +c -a =0有相等的两实数根 ,则a、b、c间的关系是 (   ) .(A)a =b +c2 (B)b =a +c2 (C)c =a +b2 (D)a +b +c =04 若 4x3-x =1,则 8x4+12x3-2x2 -5x +5的值…  相似文献   

14.
我们都知道向量形式的线段分点定理,即P1,P,P2三点共线,其中λ和μ都是实数,如果P分P1P2(向量)的两段比为μ:λ,则OP(向量)=λOP1(向量)+μOP2(向量),λ+μ=1.此定理在求解多边形问题中的应用及其广泛,并且起到十分重要的作用.但是在处理圆相关的问题时,就不太得心应手了,怎样能把这个定理进一步拓展,使其能解决一些圆或是弧的问题?通过线段分点定理猜想到可以给出共圆弧的类似定理,应用所学知识证明定理,实现应用定理.  相似文献   

15.
我们知道圆x2 + y2 =R2 在其上任一点 (x0 ,y0 )处的切线方程为x0 x+ y0 y=R2 如果对于直线Ax+By +C =0 (C ≠ 0 )作如下变形 :R2 A-CR2 x +R2 B-CR2 y =1.若点P(- R2 AC ,- R2 BC )满足圆的方程 ,则直线与圆相切于点P .椭圆 x2a2 + y2b2 =1在其上任一点 (x0 ,y0 )处的切线方程为 x0 xa2 + y0 yb2 =1,对于直线Ax+By +C =0 (C≠ 0 )作如下变形 :    a2 A-Ca2 x+b2 B Cb2 y=1.若点P(- a2 AC , b2 BC )满足椭圆方程 ,则直线与椭圆相切于点点P .双曲线x2a2 - y2…  相似文献   

16.
三角形中线定理面面观   总被引:1,自引:0,他引:1  
三角形中线定理是平面几何中非常重要的定理之一 ,它具有广泛的应用 ,故值得我们进一步总结和研究 .为此 ,本文给出它的证明、变式及应用 ,供同行参考 .中线定理 若OA是△ABC的BC边上的中线 ,则 |AB| 2 |AC| 2 =2 (|OA| 2 |OC| 2 ) .一、定理的证明此定理的证法较多 ,这里仅给出两种较简洁的证法 .证法 1 :以BC所在直线为x轴、O点为原点建立直角坐标系 ,如图 1 .设点A的坐标为 (b,c) ,C的坐标为(-a ,0 ) ,则B的坐标为(a ,0 ) ,由此得|AB| 2 =(a -b) 2 c2 ,|AC| 2 =(a b) 2 c2 ,|OA| 2 =b2 c…  相似文献   

17.
一、单项选择题 (本题共 6小题 ,每小题 5分 ,满分 3 0分 )1 设a <b <0 ,a2 +b2 =4ab ,则a +ba -b的值为 (   ) .(A) 3   (B) 6   (C) 2   (D) 32 已知a =1 999x +2 0 0 0 ,b =1 999x+2 0 0 1 ,c=1 999x +2 0 0 2 ,则多项式a2 +b2 +c2 -ab-bc-ca的值为 (   ) .(A) 0    (B) 1    (C) 2    (D) 3图 13 如图 1 ,点E、F分别是矩形ABCD的边AB、BC的中点 ,连结AF、CE ,设AF、CE交于点G ,则S四边形AGCDS矩形ABCD 等于 (   ) .(A) 56  (B) 45    (C…  相似文献   

18.
许勇 《中等数学》2003,(2):44-48
第一试一、选择题 (每小题 6分 ,共 36分 )1.a、b是异面直线 ,直线c与a所成的角等于c与b所成的角 .则这样的直线c有 (   ) .(A) 1条  (B) 2条  (C) 3条  (D)无数条2 .若△ABC的三边长a、b、c满足a2 -a - 2b - 2c =0且a +2b - 2c +3=0 ,则它的最大内角的度数是 (   ) .(A) 15 0°  (B) 12 0°  (C) 90°  (D) 6 0°3.对任意给定的自然数n ,n6+3a为正整数的立方 ,a为正整数 .则这样的a(   ) .(A)有无数个    (B)只有有限个(C)只有 1个    (D)不存在4 .在复平面上 ,曲线z4+z =1与圆 …  相似文献   

19.
平面向量是第一次进入中学数学教材 ,初学这部分内容时 ,学生常常会出现这样或那样的错误 .现列举几种常见错误 ,供大家辨析 .一、忽视两向量夹角的意义致错例 1 如图 1 , ABC的三边长均为 1 ,且BC =a,CA =b,AB=c,求a·b +b·c+c·a的值 .错解 ∵ ABC的三边长均为 1 ,∴∠A =∠B =∠C =60°,|a| =|b| =|c| =1 ,∴a·b=|a|·|b|cosC=cos 60°=12 .同理b·c =c·a=12 ,于是a·b +b·c+c·a=32 .评析 这里误认为a与b的夹角为∠ACB ,其实 ,两向量的夹角应为平面上同一起点…  相似文献   

20.
1 若一个四位数等于它的各位数字的和的 4次方 ,则这个四位数是 .图 12 如图 1,在△ABC中 ,DE∥BC ,分别交AB、AC于D、E .若S△ADE=4,S△BDE=6 ,则S△BCE=.参考答案1 欲求这个四位数 ,只需求出它的各位数字的和即可 .设这个四位数为abcd ,则abcd =(a +b +c+d) 4.∵  10 0 0 <abcd <9999,∴  10 0 0 <(a +b +c +d) 4<9999.∴  6≤a +b +c+d≤ 9.  ∵ a、b、c、d是整数 ,∴ a +b +c +d =6或 7或 8或 9.经检验可知 ,a +b +c +d =7符合题意 ,其余都不符合题意 .∴ ab…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号