首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background: Past studies have shown significant associations between students’ conceptions of learning science and their science learning self-efficacy. However, in most of the studies, students’ science learning self-efficacy has often been measured by a singular scale.

Purpose: Extending the findings of these studies, the present study adopted a multi-dimensional instrument to assess Taiwanese high school students’ science learning self-efficacy and investigate the relationships with their conceptions of learning science.

Sample: A total of 488 Taiwanese high school students (265 male and 223 female) were invited to participate in this survey.

Design and method: All the participants responded to the Conceptions of Learning Science (COLS) questionnaire regarding ‘Memorizing’, ‘Testing’, ‘Calculating and practicing’, ‘Increase of knowledge’, ‘Applying’ and ‘Understanding and seeing in a new way’ and the Science Learning Self-Efficacy (SLSE) instrument, including ‘Conceptual understanding’, ‘Higher-Order cognitive skills’, ‘Practical work’, ‘Everyday application’ and ‘Science communication’.

Results: The path analysis results derived from the structural equation modeling method indicated that, of all five SLSE dimensions, the ‘Understanding and seeing in a new way’ COLS displayed as a positive predictor, while the ‘Testing’ COLS was a significant negative predictor. The ‘Applying’ COLS item can only positively contribute to the SLSE dimensions of ‘Higher-Order thinking skills’, ‘Everyday application’ and ‘Science Communication’.

Conclusions: In general, students in strong agreement with learning science as understanding and seeing in a new way or the application of learned scientific knowledge are prone to possess higher confidence in learning science. However, students who consider learning science in terms of preparing for tests and examinations tend to hold lower science learning self-efficacy.  相似文献   

2.
Background: Blending collaborative learning and project-based learning (PBL) based on Wolff (2003) design categories, students interacted in a learning environment where they developed their technology integration practices as well as their technological and collaborative skills.

Purpose: The study aims to understand how seventh grade students perceive a collaborative web-based science project in light of Wolff’s design categories. The goal of the project is to develop their technological and collaborative skills, to educate them about technology integration practices, and to provide an optimum collaborative, PBL experience.

Sample: Seventh grade students aged 12–14 (n = 15) were selected from a rural K–12 school in Turkey through purposeful sampling.

Design and methods: The current study applied proactive action research since it focused on utilizing a new way to enhance students’ technological and collaborative skills and to demonstrate technology integration into science coursework. Data were collected qualitatively through interviews, observation forms, forum archives, and website evaluation rubrics.

Results: The results found virtual spaces such as online tutorials, forums, and collaborative and communicative tools to be beneficial for collaborative PBL. The study supported Wolff’s design features for a collaborative PBL environment, applying features appropriate for a rural K–12 school setting and creating a digitally-enriched environment. As the forum could not be used as effectively as expected because of school limitations, more flexible spaces independent of time and space were needed.

Conclusions: This study’s interdisciplinary, collaborative PBL was efficient in enhancing students’ advanced technological and collaborative skills, as well as exposing them to practices for integrating technology into science. The study applied design features for a collaborative PBL environment with certain revisions.  相似文献   


3.
Background: Science educators have sought to structure collaborative inquiry learning through the assignment of static group roles. This structural approach to student grouping oversimplifies the complexities of peer collaboration and overlooks the highly dynamic nature of group activity.

Purpose: This study addresses this issue of oversimplification of group dynamics by examining the social leadership structures that emerge in small student groups during science inquiry.

Sample: Two small student groups investigating the burning of a candle under a jar participated in this study.

Design and method: We used a mixed-method research approach that combined computational discourse analysis (computational quantification of social aspects of small group discussions) with microethnography (qualitative, in-depth examination of group discussions).

Results: While in one group social leadership was decentralized (i.e., students shared control over topics and tasks), the second group was dominated by a male student (centralized social leadership). Further, decentralized social leadership was found to be paralleled by higher levels of student cognitive engagement.

Conclusions: It is argued that computational discourse analysis can provide science educators with a powerful means of developing pedagogical models of collaborative science learning that take into account the emergent nature of group structures and highly fluid nature of student collaboration.  相似文献   

4.
5.
Background and purpose:

The purpose of this study was to investigate the comparative effects of a prediction/discussion-based learning cycle (HPD-LC), conceptual change text (CCT) and traditional instruction on 10th grade students’ understanding of genetics concepts.

Sample:

Participants were 112 10th basic grade male students in three classes of the same school located in an urban area. The three classes taught by the same biology teacher were randomly assigned as a prediction/discussion-based learning cycle class (n?=?39), conceptual change text class (n?=?37) and traditional class (n?=?36).

Design and method:

A quasi-experimental research design of pre-test–post-test non-equivalent control group was adopted. Participants completed the Genetics Concept Test as pre-test–post-test, to examine the effects of instructional strategies on their genetics understanding. Pre-test scores and Test of Logical Thinking scores were used as covariates.

Results:

The analysis of covariance showed a statistically significant difference between the experimental and control groups in the favor of experimental groups after treatment. However, no statistically significant difference between the experimental groups (HPD-LC versus CCT instruction) was found.

Conclusions:

Overall, the findings of this study support the use of the prediction/discussion-based learning cycle and conceptual change text in both research and teaching. The findings may be useful for improving classroom practices in teaching science concepts and for the development of suitable materials promoting students’ understanding of science.  相似文献   

6.
Background : The Trends in International Mathematics and Science Study (TIMSS) assesses the quality of the teaching and learning of science and mathematics among Grades 4 and 8 students across participating countries.

Purpose : This study explored the relationship between positive affect towards science and mathematics and achievement in science and mathematics among Malaysian and Singaporean Grade 8 students.

Sample : In total, 4466 Malaysia students and 4599 Singaporean students from Grade 8 who participated in TIMSS 2007 were involved in this study.

Design and method : Students’ achievement scores on eight items in the survey instrument that were reported in TIMSS 2007 were used as the dependent variable in the analysis. Students’ scores on four items in the TIMSS 2007 survey instrument pertaining to students’ affect towards science and mathematics together with students’ gender, language spoken at home and parental education were used as the independent variables.

Results : Positive affect towards science and mathematics indicated statistically significant predictive effects on achievement in the two subjects for both Malaysian and Singaporean Grade 8 students. There were statistically significant predictive effects on mathematics achievement for the students’ gender, language spoken at home and parental education for both Malaysian and Singaporean students, with R 2 = 0.18 and 0.21, respectively. However, only parental education showed statistically significant predictive effects on science achievement for both countries. For Singapore, language spoken at home also demonstrated statistically significant predictive effects on science achievement, whereas gender did not. For Malaysia, neither gender nor language spoken at home had statistically significant predictive effects on science achievement.

Conclusions : It is important for educators to consider implementing self-concept enhancement intervention programmes by incorporating ‘affect’ components of academic self-concept in order to develop students’ talents and promote academic excellence in science and mathematics.  相似文献   

7.
ABSTRACT

The study provides an insight into how teachers may facilitate students’ group learning in science with digital technology, which was examined when Norwegian lower secondary school students engaged in learning concepts of mitosis and meiosis. Quantitative and qualitative analyses of the teacher’s assistance draw on Galperin’s conceptualisation of learning.

Findings reveal patterns in the teacher’s guidance: the teacher fulfilled the orienting, executive and controlling functions while assisting students in identifying the key features of mitosis and meiosis and solving the compare and contrast task. The teacher relied on and interplayed with the available mediational resources: compare and contrast task, digital animations, and collaborating peers. However, it was the compare and contrast task that demonstrated an approach to study scientific concepts which may have contributed to the development of learners’ understanding about to engage in learning in science. By adopting such an approach, learning activity has the potential to not only help students to achieve learning outcomes but it acquires a functional significance, becoming a tool in the learning process aimed at the development of students’ as learners. The digital animations, in turn, demonstrated scientific processes that were otherwise invisible for students and triggered group discussions. The study, therefore, raises questions about the need for practitioners’ awareness of the type of support the technology and other resources provide to assist both conceptual learning and enhancing students’ agency in learning to learn.  相似文献   

8.
ABSTRACT

This study investigated students’ perceptions of their graduate learning outcomes including content knowledge, communication, writing, teamwork, quantitative skills, and ethical thinking in two Australian universities. One university has a traditional discipline-orientated curriculum and the other, an interdisciplinary curriculum in the entry semester of first year. The Science Students Skills Inventory asked students (n?=?613) in first and final years to rate their perceptions of the importance of developing graduate learning outcomes within the programme; how much they improved their graduate learning outcomes throughout their undergraduate science programme; how much they saw learning outcomes included in the programme; and how confident they were about their learning outcomes. A framework of progressive curriculum development was adopted to interpret results. Students in the discipline-oriented degree programme reported higher perceptions of scientific content knowledge and ethical thinking while students from the interdisciplinary curriculum indicated higher perceptions of oral communication and teamwork. Implications for curriculum development include ensuring progressive development from first to third years, a need for enhanced focus on scientific ethics, and career opportunities from first year onwards.  相似文献   

9.
Background: In recent years, science curricula (chemistry, physics, biology, earth science, life science, etc.) in many countries have been prepared and applied according to the inquiry-based learning approach. Although the acquisition and application of the inquiry skills are one of the important objectives of the science curriculum, the inquiry skills of each student do not enhance at the same level. The inquiry level of the learning environment; the importance and value attached to the inquiry in that environment, students who have different goals when attending to the learning environments, and students who do not get involved in the learning process at the same level can be shown as the reasons of this.

Purpose: The purpose of this research is to examine both the direct and indirect relationships between the inquiry-based self-efficacy, the achievement goal orientation, the learning strategies, and the inquiry skills variables.

Sample: This research was conducted during the 2015-2016 school year among 498 seventh and eighth graders at public schools in Turkey’s Ayd?n province.

Design and methods: The Inquiry-based Self-Efficacy Scale, the Goal Orientation Scale, the Learning Approach Scale, and the Inquiry Skills Test were applied to the students. The analysis of data was carried out through the Multilevel Structural Equation Model (MSEM).

Results: The findings related to the first model did not provide evidence for either direct or indirect effects of the inquiry-based self-efficacy on inquiry skills, achievement goal orientation, and learning strategies. However, findings from the final models provided evidence for both direct and indirect effects of separately inquiry-based self-efficacy and the achievement goal orientation on the inquiry skills through the learning strategies.

Conclusions: This study demonstrates the potential that relations with self-efficacy, achievement goal orientation, and task value theory while improving inquiry skills.  相似文献   


10.
ABSTRACT

This study explores students’ perceptions of the effectiveness of a Problem-Based Learning (PBL) design project, taken as part of a first-year engineering module, in developing professional skills needed for engineering practice. Students completed surveys before and after the PBL group project, and produced personal reflections on the process. The closed survey questions were analysed quantitatively and the main themes from the reflections outlined using General Inductive Analysis. Students rated themselves as having improved across a range of professional skills as a result of the project, with particular emphasis on teamwork, communication skills, understanding of the design process and self-directed learning. In addition, they highlighted improved confidence, as well as new friendships they developed, an important element of a module like this as they transition from secondary to higher education. They were particularly positive about the scaffolded approach taken within the PBL project in terms of its contribution to their learning.  相似文献   

11.
12.
Background: Despite the growing body of research on self-efficacy, previous studies have failed to clarify exactly how it is constructed. Meanwhile, the literature indicates that, in Taiwan, junior high school students tend to show lower self-efficacy in learning science compared with elementary and senior high school students.

Purpose: This study aimed to develop a mediational model providing the factors accounting for Taiwanese junior high school adolescents’ science learning self-efficacy (SLSE), especially from the perspectives of both interpersonal and intrapersonal factors.

Design: We therefore proposed a mediational model to delineate the relationships among students’ perceived responses to capitalization attempts – science learning (PRCA-SL), science learning hardiness (SLH) and SLSE by conducting structural equation modeling (SEM).

Sample: A total of 1,170 junior high school students in Taiwan were invited to take part in the study.

Results: The results confirmed our hypothesis that students’ PRCA-SL fostered their science learning hardiness, which in turn contributed to their science learning self-efficacy.

Conclusions: The findings confirmed the mediational model wherein science learning hardiness completely mediated the relationship between PRCA-SL and science learning self-efficacy.  相似文献   


13.
ABSTRACT

Many science curricula and standards emphasise that students should learn both scientific knowledge and the skills associated with the construction of this knowledge. One way to achieve this goal is to use inquiry-learning activities that embed the use of science process skills. We investigated the influence of scientific reasoning skills (i.e. conceptual and procedural knowledge of the control-of-variables strategy) on students’ conceptual learning gains in physics during an inquiry-learning activity. Eighth graders (n?=?189) answered research questions about variables that influence the force of electromagnets and the brightness of light bulbs by designing, running, and interpreting experiments. We measured knowledge of electricity and electromagnets, scientific reasoning skills, and cognitive skills (analogical reasoning and reading ability). Using structural equation modelling we found no direct effects of cognitive skills on students’ content knowledge learning gains; however, there were direct effects of scientific reasoning skills on content knowledge learning gains. Our results show that cognitive skills are not sufficient; students require specific scientific reasoning skills to learn science content from inquiry activities. Furthermore, our findings illustrate that what students learn during guided inquiry activities becomes visible when we examine both the skills used during inquiry learning and the process of knowledge construction. The implications of these findings for science teaching and research are discussed.  相似文献   

14.
ABSTRACT

Collaborative learning is a key approach to the development of teaching and learing activities. Project-based learning (PBL) is an approach that encourages the acquisition of skills by the students promoting collaboration among them, since it requires them to solve activities for the development of a specific product. There are various experiences of using this methodology, most of them applied in primary and secondary education, and the few that refer to higher education are carried out in classroom settings. This work presents a case study based on a specific course designed for the acquisition of the digital competence that combines collaborative online learning with PBL and the results obtained from its implementation are explained. The collected data show the success of its application and validates the design presented, highlighting the key elements for fostering collaboration among students.  相似文献   

15.
Background: There is a growing interest in investigating attitudes towards science and views of Nature of Science among elementary grade students in terms of gender, cultural backgrounds, and grade level variables.

Purpose: The purpose of this study is to examine the attitudes toward science and views of Nature of Science among Spanish students, Spanish students of gypsy ethnicity and second-generation Spanish students with east-European heritage, and to determine if their attitudes are related to their views of Nature of Science.

Sample: Data for this study was gathered from seven elementary schools in Spain, forming a convenience sample of 149 students enrolled from 2nd to 5th grade.

Design and Methods: The Nature of Science Instrument (NOSI) and an adaptation of the Test of Science Related Attitudes scale (TOSRA) were used. Follow-up structured interviews were performed with 15 participants.

Results: Regarding gender, boys had better attitudes toward Science than girls but more naïve views of the empirical Nature of Science. In relation to cultural background, second generation Spanish students with east-European heritage reported significantly better attitudes toward Science than Spanish students and Spanish students of gypsy ethnicity. No differences in Nature of Science views were found. Concerning grade level, third graders had more positive attitudes toward Science than fifth and sixth graders and more informed views of the tentative Nature of Science. Finally, no relation between Nature of Science views and attitudes towards Science were identified.

Conclusion: This study stress the need to address the steady decline in positive attitude toward Science and to improve students’ views of Nature of Science from early elementary grades, and to use gender and culturally inclusive science teaching strategies.  相似文献   

16.
ABSTRACT

The purpose of this study was to investigate the effect of problem-based learning (PBL) on the metacognitive awareness of pre-service science teachers. In the study, an experimental design with pre-test/post-test control group was used. A total of 51 junior pre-service science teachers participated in the study. The study was carried out over 10 weeks and within the scope of an environmental science course. During the study, lessons in the experimental group were processed using a PBL approach while lessons in the control group were processed using a traditional teaching approach. Data were collected through a personal information form and Metacognitive Awareness Inventory. Data were then analysed using PASW Statistics 18 (SPSS Inc.). The findings of the study revealed that PBL could be an effective intervention to promote metacognitive awareness towards procedural knowledge, planning and debugging. The results are discussed based on the findings of the study.  相似文献   

17.
ABSTRACT

The emerging paradigm of responsible research and innovation (RRI) in the European Commission policy discourse identifies science education as a key agenda for better equipping students with skills and knowledge to tackle complex societal challenges and foster active citizenship in democratic societies. The operationalisation of this broad approach in science education demands, however, the identification of assessment frameworks able to grasp the complexity of RRI process requirements and learning outcomes within science education practice. This article aims to shed light over the application of the RRI approach in science education by proposing a RRI-based analytical framework for science education assessment. We use such framework to review a sample of empirical studies of science education assessments and critically analyse it under the lenses of RRI criteria. As a result, we identify a set of 86 key RRI assessment indicators in science education related to RRI values, transversal competences and experiential and cognitive aspects of learning. We argue that looking at science education through the lenses of RRI can potentially contribute to the integration of metacognitive skills, emotional aspects and procedural dimensions within impact assessments so as to address the complexity of learning.  相似文献   

18.
In this study, a multiple-choice test entitled the Science Process Assessment was developed to measure the science process skills of students in grade four. Based on the Recommended Science Competency Continuum for Grades K to 6 for Pennsylvania Schools, this instrument measured the skills of (1) observing, (2) classifying, (3) inferring, (4) predicting, (5) measuring, (6) communicating, (7) using space/time relations, (8) defining operationally, (9) formulating hypotheses, (10) experimenting, (11) recognizing variables, (12) interpreting data, and (13) formulating models. To prepare the instrument, classroom teachers and science educators were invited to participate in two science education workshops designed to develop an item bank of test questions applicable to measuring process skill learning. Participants formed “writing teams” and generated 65 test items representing the 13 process skills. After a comprehensive group critique of each item, 61 items were identified for inclusion into the Science Process Assessment item bank. To establish content validity, the item bank was submitted to a select panel of science educators for the purpose of judging item acceptability. This analysis yielded 55 acceptable test items and produced the Science Process Assessment, Pilot 1. Pilot 1 was administered to 184 fourth-grade students. Students were given a copy of the test booklet; teachers read each test aloud to the students. Upon completion of this first administration, data from the item analysis yielded a reliability coefficient of 0.73. Subsequently, 40 test items were identified for the Science Process Assessment, Pilot 2. Using the test-retest method, the Science Process Assessment, Pilot 2 (Test 1 and Test 2) was administered to 113 fourth-grade students. Reliability coefficients of 0.80 and 0.82, respectively, were ascertained. The correlation between Test 1 and Test 2 was 0.77. The results of this study indicate that (1) the Science Process Assessment, Pilot 2, is a valid and reliable instrument applicable to measuring the science process skills of students in grade four, (2) using educational workshops as a means of developing item banks of test questions is viable and productive in the test development process, and (3) involving classroom teachers and science educators in the test development process is educationally efficient and effective.  相似文献   

19.
The twofold purpose of this study is to identify engineering students’ perceptions of a problem-based learning environment and to analyse the influence of their personal situation, general interest in engineering and ability to succeed on their perception, after they were exposed to PBL for the first time. Based on an adjusted version of the problem-based learning environment inventory [Senocak, E. 2009. “Development of an Instrument for Assessing Undergraduate Science Students’ Perceptions: The Problem-based Learning Environment Inventory.” Journal of Science Education Technology 18 (6): 560–569], data regarding students’ perception were collected through a questionnaire survey and analysed by applying exploratory factor analysis and structural equation modelling. The analysis revealed a three-factorial PBL environment consisting of learning facilitator support, student responsibility and project quality, with strong influences of students’ personal situation on project quality, interest on the learning facilitator support and ability to succeed on students’ responsibility. Supporting students’ general interest in engineering seems to improve their perception of the learning facilitator support and ensuring students’ ability to succeed in a PBL environment seems to increase students’ awareness of their own responsibility.  相似文献   

20.
ABSTRACT

Facilitating students’ deep-strategy behaviors and positive learning performances of science inquiry is an important and challenging educational issue. In this study, a contextual science inquiry approach is proposed for developing a 3D experiential game to cope with this problem. To evaluate the impacts of the game on students’ science learning approaches, learning achievements and problem-solving awareness as well as the learning behavioral patterns of the students with different learning achievements, a quasi-experiment was conducted in an elementary school geoscience course. The participants were two classes of sixth graders. One class was the experimental group who learned with the 3D experiential game, and the other was the control group who learned with the conventional technology-enhanced learning approach. The experimental results showed that the students learning with the 3D experiential gaming system showed better learning achievements, problem-solving tendency, deep learning strategies, and deep learning motive than those who learned with the conventional technology-enhanced learning approach. Moreover, the higher-achievement students showed more behavioral patterns of deep learning strategies than the lower-achievement students. The findings of this study provide a good reference for helping lower-achievement students improve their learning performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号