首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
三角形的中位线定理揭示了其中位线与第三边的位置关系与数量关系,巧用它可以证明若干与线段中点有关的问题. 例1 如图1,△ABC中,BD 平分∠ABC,AD BD于D,E为AC的中点, 求证:DE∥BC. 证明:延长AD交BC于F. ∵BD平分∠ABC,又AD BD 于D,∴AD=FD,又∵AE= CE,由三角形中位线定理得: DE∥FC,∴DE∥BC.  相似文献   

2.
三角形中位线定理说明了三角形的中位线与第三边的位置关系和数量关系.利用这两种关系,可证明若于与线段中点有关的问题.例1 如图1,△ABC中,BD平分∠ABC,AD⊥BD于D,E为Ac的中点.求证:DE//BC.分析由E为AC的中点,若延长AD交BC于F,那么要证DE//BC,则只要证D为AF的中点.这只要证△BDA≌△BDF.∵AD⊥BD,∴∠BDA=∠BDF=90°.∵∠1=∠2,BD=BD,∴∠BDA≌△BDF.  相似文献   

3.
题△ABC中,DE为中位线,AF是中线,求证:DE和AF互相平分. 分析只需连结DF、EF,证明四边形ADFE是平行四边形即可得出结论.它体现了一个几何问题的思路:连结三角形三边中点,利用三角形中位线的性质. 象△DEF这样由三条线段中点构成的三  相似文献   

4.
中点是图形中的特殊点 ,中线、中位线是三角形和梯形中的特殊线段。在解题时 ,如能运用相关性质 ,巧添辅助线 ,可使许多问题得到迅速解决。一、直接利用中点定义和中线的性质例 1 已知 :如图 1,△ ABC中 ,BD和 CE是高 ,M为 BC中点 ,P为 DE中点。求证 :PM⊥ DE。略证 :EM、DM分别为 Rt△ EBC和 Rt△ DBC斜边上的中线 ,故 EM=DM=12 BC。又因 PM为等腰△ MDE底边上的中线 ,故 PM⊥ DE。二、利用中点 ,构造中位线例 2 已知 :如图 2 ,△ ABC中 ,AD是高 ,BE是中线 ,且∠ EBC=30°。求证 :AD=BE。略证 :取 CD的中点 F,…  相似文献   

5.
中点是几何图形中的特殊点,与中点有关的线段有三角形的中线、中位线、梯形的中位线等.利用中点很容易构造全等三角形、等腰三角形.在解题中,若能灵活运用它的相关性质,可使许多问题得到迅速解决.一、由中点联想三角形的中线例1如图1,△ABC中BD和CE是高,M为BC中点,P为DE的中点.求证:PM⊥DE.分析:由∠BDC=∠BEC=90°,M为BC中点,可得MD=ME=12BC,故△MDE为等腰三角形.又P为DE中点,根据等腰三角形底边上的中线也是底边上的高即可得证.二、由中点联想中位线例2如图2,梯形ABCD中,AD∥BC,AD相似文献   

6.
中点是线段上的特殊点,中线和中位线是三角形中的特殊线段,平面几何中有许多与线段有关的问题,常可通过巧取中点或作平行线,转化为“中线”或“中位线”问题,然后再运用相关的性质来解决.而对于中点的问题,着眼点不同,解法也不同. 例题如图1,在△ABC中,D为BC边的中点,延长AD到E,使  相似文献   

7.
中点在初中数学中,有着很广泛的用途.线段的中点,把线段分成相等的两部分.几何图形中出现的中点,可以让人有丰富的联想.巧用好中点,利用中点作出中线或中位线,对解决一些题目能起到事半功倍的效果.几何图形中的出现的中点,利用中点作出辅助线,对解题起着关键性作用.以下是我总结的初中阶段关于中点运用的几个方面.一、延长中线,构造X三角形,证明三角形全等例已知△ABC,AB=8,AC=6,D为BC中点,  相似文献   

8.
在几何计算或论证中,时常可见到与中点、中线有关的问题。合理巧妙地利用中点、中线这一条件作辅助线,构造全等三角形,可使问题迎刃而解。以下试举例说明之。例1.△ABC中,AB=6,AC=4,则中线AD的取值范围为。分析:已知两条线段与未知线段的位置关系分散,设法把它们联系在一起是解题的关键。略解:如图,延长AD至E,使得DE=DA,连结BE,易知△ADC△EDB,BE=AC=4。在△ABE中,由三角形三边关系有:2<2AD<10,从而1相似文献   

9.
众志  肖莉  草芥 《高中生》2011,(1):24-25
一、有了中点配中点,两点相连中位线 例1如图1所示.在平行四边形ABCD中.AB=2BC.∠ABC=120°,E为线段4日的中点.将△ADE沿直线DE翻折成△A’DE,使平面A’DE⊥平面BCDE.F为线段A’C的中点.  相似文献   

10.
三角形中位线定理是三角形的一个重要性质,在学习这条定理的过程中,应注意以下几点: 1.把三角形中线与三角形中位线加以区别.这二者只有一字之差,它们的不同点是:“三角形的中线”指的是连结三角形的一个顶点和它对边中点的线段;“三角形的中位线”指的是连结三角形两边中点的线段.而这两个概念又有共同点:一都是线段;二每一个三角形都有三条中线,也都有三条中位线.  相似文献   

11.
解三角形题目时,我们常需要延长中线的一倍,构成全等三角形或平行四边形,使某些角或者线段的位置得到转移,从而使问题得到解决。一、证明线段相等例1 在△ABC中,AB=AC,E是AB的中点,  相似文献   

12.
三角形中位线定理揭示了图形线段之间的数量关系和位置关系,它常与直角三角形的性质“直角三角形斜边上中线等于斜边的一半”联袂解决几何中点问题,以近年中考题为例说明如下.  相似文献   

13.
在一些基本图形中,蕴含着许多有用的知识,如果同学们细心思考、仔细玩味,就会有意想不到的惊喜和收获.现举一例说明:例如图1所示,在△ABC中,AB=AC=13,BC=10,D是AB的中点,过点D作DE⊥AC于点E,则DE的长是.思路点拨△ABC是等腰三角形,常常用到勾股定理.D是AB的中点,遇中点要想到中位线.过B作BG⊥AC于G,BG可利用△ABC面积不变来求得.由等腰三角形中三线合一及勾股定理知BC上的高AF  相似文献   

14.
三角形的中线和中位线是三角形中的两条重要线段,也是初中几何中两个易混的概念(concept),可从下面几个方面区分. 一、从定义上区分在三角形中,连结一个顶点及其对边中点的线段叫做三角形的中线;连结三角形两边中点的线段叫做三角形的中位线.三角形有三条中线,三条中线相交于一点,叫做三角形的重心.三角形也有三条中位线,  相似文献   

15.
例1 △ABC中,AB=8,AC=14,则中线AD的取值范围是 分析本题涉及三角形“三边”之间的关系,而两边与第三边中线不在同一三角形中,考虑到中线把一边分成两条相等的线段的情况,采用倍长中线法,即将中线加倍,将中线与已知两边转移到同一三角形中,问题便可解决.  相似文献   

16.
三角形面积公式S△=21ah是同学们熟知的,由于同学们对它理解不深,觉得它的用处不大.如果在理解它的基础上,将它的一些性质与平面几何的有关知识“串联”起来解决几何问题,就显得简捷巧妙,省时省力.举例应用如下:例1已知,如图1,在△ABC中,DE∥BC,AF为BC边上的中线,且交DE于G.求证:DG=EG.图1分析点F为中点,易知S△ABF=S△ACF,DE∥BC,连结DF,EF,则S△ADF=S△AEF,联想到作高.证明连结DF,EF,分别过D,E作DN⊥AF,EM⊥AF.因为AF为BC上的中点,所以S△AFB=S△AFC.因为DE∥BC,所以S△DFB=S△EFC.所以S△AFD=S△AFE…  相似文献   

17.
三角形和梯形中位线定理不仅反映了图形间线段的位置关系,而且还揭示了线段间的数量关系,用它不但可以解决线段的和差、倍分、相等问题,还可以起到“桥梁”作用.在证明线段之间的某些不等关系更是尤为重要.因此对涉及线段中点的问题利用中位线解题更有效.结合例题,浅析应用.  相似文献   

18.
例1如图1,在△ABC中,AB>AC,AD是BC边上的中线.求证:∠BAD<∠CAD.图1分析注意到AD是BC边上的中线,中线加倍是常见的添辅助线的方法.然后把研究对象集中在△ABE中,由大边对大角,将问题得以解决.证明延长AD到点E,使DE=AD,连结BE,则D是△ADC与△EDB的对称中心,BE=CA,∠E=∠CAD.∵AB>AC,∴AB>BE,∴∠BAD<∠E,从而∠BAD<∠CAD.例2如图2,在△ABC中,D是BC边的中点,ED⊥DF,EF分别交AB、AC于E、F两点.求证:BE+FC>FE.图2分析能否将BE、FC、EF移到同一三角形考察线段不等关系?利用对称性作图是可以实施的,于是问…  相似文献   

19.
本文应用构造全等三角形的方式对一类关于角度不等和线段不等的几何题进行证明,供参考. 一、构造全等三角形证两线不等 例1已知AD是△ABC的中线,∠BAD〉∠DAC,求证:AC〉AB. 证明:如图1,延长AD到E,使DE=AD,连结BE.则在△ADC和△EDB中,因为BD=CD,∠ADC=∠EDB,AD=DE,所以△ADC≌△EDB(SAS),所以∠DAC=∠DEB,  相似文献   

20.
读者都知道,三角形中三条边上的中线交于一点,这个点就是三角形的重心,重心与一边中点的线段的长是对应中线长的1/3,即:如果G是△ABC三条中线AD、BE、CF的交点,那么DG/DA=EG/EB=FG/FC=1/3,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号