首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
This paper presents an “ecological perspective” on research with computers in science education. It is proposed that current and past research within the computer education field has been characterised by an over-emphasis on technical applications of the machinery, rather than a deeper consideration of the teaching and learning process. This tendency toward “technocentric thinking” has usually failed to take into account the important social and cognitive interactions within the computer learning environment. The view advanced here, is that an understanding of the effects of computers on students' learning can be achieved only through an analysis of the dynamic interactions between students and teachers as they work with computers in a particular environment. A theoretical framework for understanding this range of interactions is presented. Finally, an ecological model is proposed for conducting future research on the application of computers in science education. Specializations: information technology in education, science education, technology education, environmental education, and media education  相似文献   

2.
Relatively little research has been conducted to monitor the role of writing in science lessons. This paper reports the findings of four case studies concerning the teaching and writing of science in isolated one-teacher schools. The teachers participated in an intervention program that aimed to facilitate the teaching of enquiry-based science. This program introduced an innovation consisting of instructional materials and a teaching approach. A multi-site case study design was used which involved regular lesson observations at the schools over a period of 12 months. Documents in the form of the students' written reports were used to supplement data regarding the teachers' use of the innovation. There was a variation in the extent and method of use of the innovation which was evident in the students' reports. Specializations: K-6 Science and technology curriculum and instruction, teacher perceptions.  相似文献   

3.
This paper presents a model for the type of classroom environment believed to facilitate scientific conceptual change. A survey based on this model contains items about students' motivational beliefs, their study approach and their perceptions of their teacher's actions and learning goal orientation. Results obtained from factor analyses, correlations and analyses of variance, based on responses from 113 students, suggest that an empowering interpersonal teacher-student relationship is related to a deep approach to learning, a positive attitude to science, and positive self-efficacy beliefs, and may be increased by a constructivist approach to teaching. Specializations: secondary school science learning environments, writing in science, alternative frameworks, the language of science.  相似文献   

4.
This paper discusses a study in progress which involves the use of a computerised research science database (Birds of the Antarctica) and specially designed curriculum materials. The purpose of the study is to investigate the extent to which students’ inquiry skills can be facilitated by the materials. Much attention is given in the programme to developing both students’ inquiry skills and their subject-matter knowledge. Year 11 and 12 students’ knowledge and skills development are interpreted as they interact with the computerised database and the curriculum materials. Preliminary findings about students’ abilities and perceptions are discussed and, in particular, constraints to the development of inquiry skills and construction of understanding are explored. Specializations: Science education, computers in education, learning environment.  相似文献   

5.
This research was carried out over a period of ten months with children in Grades 2 and 3 (aged 7 and 8) who were participating in a sequence of technology activities. Since the introduction into Victorian primary schools ofThe Technology Studies Framework P-10 (Crawford, 1988), more teachers are including technology studies in their classrooms and by so doing may assist children's understanding of science concepts. Children are being exposed to science phenomena related to the technology activities and Technology Studies may be a way of providing children with science experiences. ‘Technology Studies’ in this context refers to children carrying out practical problem solving tasks which can be completed without any particular scientific knowledge. Participation in the technology activities may encourage children to become actively involved, thereby facilitating an exploration of the related science concepts. The project identified the importance of challenge in relation to the children's involvement in the technology activities and the conference paper (available from the first author) discusses particular topics in terms of the balance between cognitive/metacognitive and affective influences (Baird et al., 1990) Specializations: science and technology education, interest and attitudinal change. Specialization: technology in the primary school.  相似文献   

6.
The aim of the Primary and Early Childhood Science and Technology Education Project (PECSTEP) is to improve teaching and learning in science and technology of by increasing the number of early childhood and primary teachers who are effective educators. PECSTEP is based on an interactive model of teaching and systematically links work on gender with the learning and teaching of science and technology. The project involves: a year-long inservice program which includes the development of a science curriculum unit by teachers in their schools; linking of the preservice and inservice programs; and the development of support networks for teachers. Each phase of PECSTEP has been researched by means of surveys, interviews and the use of diaries. Research questions have focussed particularly on changes in: teachers’ and student teachers’ attitudes to teaching science and technology; their perceptions of science and technology; their perceptions of their students’ responses and their understandings of how gender relates to these areas. Specializations: primary science curriculum, science teacher education, sociology of science, technology and education. Specializations: gender and science/science teacher education, feminist theory, curriculum theory. Specializations: Science education research, curriculum development.  相似文献   

7.
科学写作可以帮助教师了解学生原有的科学知识经验,引发认知过程、提高认知效率,促进前概念向科学概念发展,提升科学推理能力,是科学教育的有效路径。科学写作过程由计划、转换和检查构成,具有循环、交互性。任务环境和作者的长时记忆对科学写作亦有影响。在实际教学中,教师可以根据科学写作的内在认知过程及外在影响因素予以针对性指导。  相似文献   

8.
Intuition was one of the four key themes for science education that emerged from the Woods Hole Conference in 1957. Despite the considerable influence of this conference on a generation of curriculum projects the intuition theme was almost completely ignored. Recent studies of intuition, including an analysis of Nobel laureates' views of scientific intuition, are considered. This enables several conceptions of the nature and role of intuition in science to be defined, and its importance to be assessed. The assumption that it is also important in science education is examined by considering conditions in science teaching and learning that may encourage intuitive thinking in the light of current research developments that could lead to a new agenda for school science. Specializations: science and technology curriculum, environmental education, educational disadvantage. Specializations: phenomenography, ways of knowing, higher education—teaching and learning.  相似文献   

9.
This paper outlines work in progress on a study which is investigating what children understand about natural and processed materials and how scientific learning on the topic could be extended and reinforced in the home. Four different interview schedules for eliciting children's understanding were developed and tried out. Children's understandings prior to each of the four units, and at the conclusion of the teaching program were documented through individual interviews. Family interviews were also conducted prior to and at the conclusion to the teaching. In this paper the difficulties associated with researching young children's thinking are explored. The rationale for a storytelling context for the interviews is presented, and there is a preliminary discussion on the effectiveness of the methodology utilised. Specializations: early childhood science education; the Curriculum Corporation K-3 Science Program. Specializations: primary science education, teacher education in science, adult experiences of science and technology; the K-3 Science Program.  相似文献   

10.
Advocates of constructivist science recommend that school science begins with children’s own constructions of reality. This notion of the way in which students’ knowledge of science grows is closely paralleled by recent research on teachers’ knowledge. This paper draws on case study evidence of teachers’ work to show how two experienced teachers’ attempts to develop alternative ways of teaching science involved reframing their previous patterns of understanding and practice. Two alternative interpretations of the case study evidence are offered. One interpretation, which focuses on identifying gaps in the teachers’ knowledge of science teaching, leads to theconstructivist paradox. The second interpretation explores theconstructivist parallel, an approach which treats the process of teachers’ knowledge growth with the same respect as constructivists treat students’ learning of science. This approach, the authors argue, is not only more epistemologically consistent but also opens up the possibilities of helping teachers lead students towards a constructivist school science. Specializations: Teachers’ knowledge and culture, educational change, qualitative research methodology. Specializations: Teachers’ knowledge, imagery and teachers’ work, teacher collegiality, supervision of teachers’ work.  相似文献   

11.
Technology encompasses the goods and services which people make and provide to meet human needs, and the processes and systems used for their development and delivery. Although technology and science are related, a distinction can be made between their purposes and outcomes. This paper considers four possible approaches to teaching students about the relationship between technology and science. Atechnology-as-illustration approach treats technology as if it were applied science; artefacts are presented to illustrate scientific principles. Acognitive-motivational approach also treats technology as applied science, but presents technology early in the instructional sequence in order to promote student interest and understanding. In anartefact approach, learners study artefacts as systems in order to understand the scientific principles which explain their workings. Finally, atechnology-as-process approach emphasises the role of technological capability; in this approach, scientific concepts do not have privileged status as a basis for selecting curriculum content. Specializations: science and technology education, educational evaluation, measurement of attitudes and interests.  相似文献   

12.
This paper highlights the challenges and problems in developing an innovative K-3 science program to support teachers in the implementation of the national Statement and Profile in science. The program has been developed by the authors in association with the Curriculum Corporation. The paper outlines the assumptions made about teachers of young children, the role of research in the construction of the program, and the extent to which the Statement and Profile have influenced the process. The resolution of a number of key problems in this curriculum development is discussed: responding to teachers' needs for a base of science discipline knowledge, developing strategies for working scientifically with very young children, and helping teachers develop an extended understanding of the nature of science. Specializations: early childhood science and technology education. Specializations: primary science education, teacher education in science, adult experiences of science and technology, and curriculum development.  相似文献   

13.
This paper reports a study on concept mapping involving 14 Australian and 9 Indonesian science teachers. After a training and practice session in concept mapping, the teachers were surveyed on four scales: “Learning it”, “Teaching it”, “Useability by students”, and “Perceived benefits”. While the teachers' attitudes were generally favourable interesting differences were discerned among scales, among teachers of Biology, Chemistry, Physics and Mathematics, and between countries. Specialization: Social psychology of science learning, eco-culture and metalearning in science. Specializations: Eco-culture and metalearning in science; distance education delivery systems.  相似文献   

14.
Conclusions This study raises a great number of questions, many of which would be valuable for science curricula to reflect upon. Firstly, it would seem that the practising professionals do not believe methodology is easily taught, at least not without a strong factual knowledge base. Secondly, science courses have had little effect on carrer choice, with the possible slight exception of physical scientists working in the public sector. Thirdly, scientists would give strong support to the idea of teaching students to use ‘scientific attitudes’ in their everyday life. And fourthly, the social implications of science are felt to be deserving of close attention in schools-but perhaps not within the science classroom. What clearly remains to be done is the difficult and time-consuming work to follow up these hints. What do the scientists see asthe scientific attitudes? What facts, etc., should form the basis of the science curricula? How should the social implications of science be discussed, and what responses are appropriate to them? To answer these questions will take a national study of great scope and effort, yet it would seem to be an essential part of the process of determinng science education programmes of purpose and value.  相似文献   

15.
Concern is increasingly being expressed about the teaching of higher order thinking skills in schools and the levels of understanding of scientific concepts by students. Metaphors for the improvement of science education have included science as exploration and science as process skills for experimentation. As a result of a series of studies on how children relate evidence to their theories or beliefs, Kuhn (1993a) has suggested that changing the metaphor to science as argument may be a fruitful way to increase the development of higher order thinking skills and understanding in science instruction. This report is of a case study into the coordination of evidence and theories by a grade 7 primary school student. This student was not able to coordinate these elements in a way that would enable her to rationally consider evidence in relation to her theories. It appeared that the thinking skills associated with science as argument were similar for her in different domains of knowledge and context. Specializations: science learning, scientific reasoning, learning environments, science teacher education. Specializations: cognition, reasoning in science and mathermatics.  相似文献   

16.
Concluding comments An an ‘action research’ project, science curriculum development at St Columba's is ongoing as is the total school curriculum development. An outline of the development in science has been presented here to:invite comment from science educators in order to help define future directions in curriculum development; tostimulate further research in the area of curriculum development for a ‘Science for All’, and tostimulate debate about what school science, especially junior secondary science, should be.  相似文献   

17.
Conclusion The difficulty of sharing meaning of curriculum intentions between different groups is highlighted in this study. The acceptance of the novel features of the Chemistry Study Design is mixed. The longitudinal nature of the study helped to identify the difficulty teachers had in understanding the meaning of these novel features although the experiences of teaching units in the VCE chemistry course have enabled some teachers to shift in their construction of the meaning of the words and messages around them. Specializations: chemistry and science education, technology and industry links with sicence in schools. Specializations: science and technology curriculum, environmental education, educational disadvantage. Specializations: curriculum change, science career paths. Specializations: science education, computers in schools.  相似文献   

18.
The general aim of our human nutrition project is to develop a health education model grounded in ‘everyday’ or ‘situated’ cognition (Hennessey, 1993). In 1993, we began pilot work to document adult understanding of human nutrition. We used a HyperCard stack as the basis for a series of interviews with 50 adults (25 university students, and 25 adults from offcampus). The interviews were transcribed and analysed using the NUDIST computer program. A summary of the views of these 50 adults on selected aspects of human nutrition is presented in this paper. Specializations: educational technology and the teaching-learning process, public understanding of science and technology. Specializations: educational technology, mathematics education.  相似文献   

19.
This paper examines the ideology of one the best known figures in science education in the USA, and draws attention to the relationship between the political climate and curriculum in national curriculum developments. We are mindful of the forces shaping the schooling of science in Australia, and we present this analysis as an example of the social forces that dominate education both here and overseas. Paramount is our desire to open the door for a socially responsible Australian school science experience. Social Responsibility of Science in Science Education Group.Specializations: sociology of science education, the nature of science and the production of scientific knowledge, comparative science education and environmental education. Social Responsibility of Science in Science Education Group.Specializations: comparative education with particular reference to China, the nature of science and the production of scientific knowledge.  相似文献   

20.
This paper reports an investigation into gender, ethnicity and rurality on Fijian students’ perceptions of science. A questionnaire was administered to a large sample of Form 5 classes. All students had completed a four year integrated "Basic Science" course in the junior secondary school and were continuing their studies in the upper secondary school. The responses were analysed to determine the significance of gender, ethnicity and rurality on the students’ perceptions of science, attitudes to science in the world and to science in the school curriculum. Specializations: gender issues and affective aspects of science and technology education. Specializations: Constructivism in science education, development education and gender issues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号