首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在中学化学教学中,经常应用比例这个计算方法来解计算题。我们感到有些题目,应用a_1/a_2=b_1/b_2或a_1b_2=a_2b_1来计算比较烦琐。如果应用a_1/a_2=b_1/b_2=(a_1-b_1)/(a_2-b_2),a_1(a_2-b2)=a_2(a_1-b_1)或b_1(a_2-b_2)=b_2(a_1-b_1)来计算就很方便。下面,我们提供一些例题和解法(解法2)来跟一般常用的解法(解法1)作出比较,供同志们参考。  相似文献   

2.
第六届“祖冲之杯”数学邀请赛的一道试题,本刊曾提供了“巧解”,这里再提供一个“巧解”。原题:设a_1、b_1、a_2、b_2都是实数,a_1≠a_2且(a_1+b_1)(a_1+b_2)=(a_2+b_1)(a_2+b_2)=1, 求证:(a_1+b_1)(a_2+b_1)=(a_1+b_2)(a_2+b_2)=-1。证明将条件等式同除以(a_1+b_2)(a_2+b_1)得a_1+b_2/a_2+b_1=a_2+b_2/a_1+b_1=1/(a_1+b_1)(a_2+b_1)。而a_1+b_2/a_2+b_1=a_2+b_2/a_1+b_1=(a_1+b_2)-(a_2+b_2)/(a_2+b_1)(a_1+b_1)=a_1-a_2/a_2-a_1=-1,∴(a_1+b_1)(a_2+b-1)=-1。  相似文献   

3.
数列{a_n}中,a_1=1,a_(n+1)=1/(16)(1+4a_n+(1+24a_n)~(1/2)),求a_n.解:构建新数列{b_n},使b_n=(1+24a_n)~(1/2)>0,则b_1=5,b_n~2=1+24a_n(?)a_n=(b_n~2-1)/(24).由a_(n+1=1/16(1+4a_n+(1+24a_n)~(1/2)),得(b_(n+1)~2-1)/(24)=  相似文献   

4.
许多刊物都载文指出:两个一元二次方程 a_1x~2+b_1x+c_1=0,a_2x~2+b_2x+c_2=0(a_1a_2≠0)有一公共根条件是:当 a_1b_2≠a_2b_1时,(a_1c_2-a_2c_1)~2=(a_1b_2-a_2b_1)(b_1c_2-b_2c_1);当 a_1b_2=a_2b_1时,a_1:b_1:c_1=a_2:b_2:c_2有两个公共根.应用这些条件虽可解决一切公共根问题,但较难记忆,有时会带来较繁的运算.本文再提供另外三种思考方法.  相似文献   

5.
裂项相消法     
一般地,若数列a_1,a_2,a_3,…,a_n,存在a_n=b_n-b_(n 1),则有a_1 a_2 a_3 … a_n=b_1-b_2 b_2-b_3 … b_n-b_(n 1)=b_1-b_(n 1).这就是裂项相消法。这个方法在化简、求值、证明诸方面有着广泛的应用。但关系式a_n=b_n-b_(n 1)涉及许多数学知识,推出时亦存在一定难度与技巧。本文特将常见者分类辑之如下。  相似文献   

6.
对于二次函y_1(x)=a_1x~2+b_1x+c_1与y_2(x)=a_2x~2+b_2x+c_2,(a_1.a_2(/)0),能否找到常数λ,使叠加得到的y_0(x)=y_1(x)+λy_2(x)的函数值不改变符号(定正或定负)? 下面用纯粹初等的方法进行探索: 因y_0(x)=a_1[x~2+b_1/a_1x+c_1/a_1+λa_2/a_1(x~2+b_2/a_2x+c_2/a_2)],若记b_/a_1=b、c_/a_1=c、λa_2/a_1=μ、 b_2/a_2=b_0、c_2/a_2=c_0,即考查y(x)=x~2+bx+c+μ(x~2+b_0x+c_0) 仍记为y(x)=y_1(x)+μy_2(x)〕在哪些情况下可以选取到实数μ使其定号。  相似文献   

7.
若a_1/b_1=a_2/b_2…=a_n/b_n,且b_1 b_1 … b_n≠0, 则(a_1 a_2 … a_n)/(b_1 b_2 … b_n)=(a_1)/(b_1)=…=(a_n)/(b_n). 这就是我们熟知的等比定理,关于该定理的应用在现行中学教材中涉及较少,然而它的应用还是很广泛的,兹举例予以说明。1 化简 例1 分母有理化:(3 2(2)~(1/2)-3~(1/2)-6~(1/2))/(1 2~(1/2)-3~(1/2))= __________.(1989年全国部分省、市初中数学通讯赛初赛试题)  相似文献   

8.
二项式定理以结构的对称性给人以美的享受,这种美感更体现在它的广泛应用上。运用二项式定理证明一些不等式,结构简明,思路清晰,可达事半功倍之效。 例1 已知数列|a_n|,|b_n|,分别是等差数列和等比数列,且a_1=b_1,a_2=b_2,a_1≠a_2;a_n>0(n∈N~ ),求证:当n≥3时,a_nN时a_n<0,矛盾。故d>0。 n≥3,b_n=b_1q~(n-1)=a_(a_2/a_1)~(n-1) =a_1((a_1) a_1)~(n-1)=a_1(1 d/(a_1))~(n-1) =a_1[1 C_(n-1)~1d/(a_1) C_(n-1)~2 … C_(n-1)~(n-1)(d/(a_1))~(n-1)]  相似文献   

9.
等比性质:“若a_1/b_1=a_2/b_2=a_3/b_3=…=a_n/b_n(b_+b_2+b_3+…+_n≠0),则有(a_1+a_2+a_3+…+a_n)/(b_1+b_2+b_3+…+b_n)=a_1/b_1”.它在数学解题中有着广泛的应用,若能灵活运用并注意它的条件:b_1+b_2+b_3+…+b_n≠0,可以避免繁复的计算或复杂的推理.  相似文献   

10.
定理 设△A_1B_1C_1和△A_2B_2C_2边长和面积分别为a_1,b_1,c_1,a_2,b_2,c_2和△_1,△_2,记s_i=a_i~2 b_i~2 c_i~2,i=1,2,H=a_1~2(-a_2~2 b_2~2 c_2~2) b_1~2(a_2~2-b_2~2 c_2~2) c_1~2(a_2~2 b_2~2-c_2~2),则有恒等式:  相似文献   

11.
平面上三点(a_1,b_1)、(a_2,b_2)、(a_3,b_3)共线的充要条件是(a_2-a_1)(b_3-b_1)=(b_2-b_1)(a_3-a_1)。本文编拟一些看似无关该命题的数学问题,通过建立直角坐标系,构造三点共线,从而用三点共线的这个充要条件来解。这种解法可使问题化繁为简、不落俗套。  相似文献   

12.
设a_1,a_2,…,a_n;b_1,b_2,…,b_n为两组实数,则有不等式(a_1b_1+a_2b_2+…+a_nb_n)~2≤(a_1~2+a_2~2+…+a_n~2)(b_1~2+b_2~2+…+b_n~2)(1)式中等号当且只当这两组数成比例,即当(a_1)/(b_1)=(a_2)/(b_2)=…=(a_n)/(b_n) (2)时成立  相似文献   

13.
设 a_1、a_2、b_1、b_2都是实数,a_1≠a_2,且(a_1+b_1)(a_1+b_2)=(a_2+b_1)(a_2+b_2)=1.求证:(a_1+b_1)(a_2+b_1)=(a_1+b_2)(a_2+b_2)=-1.(第六届初中《祖冲之杯》数学邀请赛试题)  相似文献   

14.
在文[1]中,对中学教材中的一类不等式作了归纳、推广和引申,笔者认为,对这类不等式还可以作更进一步的推广.首先将推广Ⅰ中的充分条件改为充要条件,得到:定理1:设a_1,a_2,b_1,b_2都是非负整数,且a_1+a_2=b_1+b_2,则a_1~(1/2)+a_2~(1/2)>b_1~(1/2)+b_2~(1/2)的充分必要条件为:  相似文献   

15.
对等比数列求和公式(高二代数第58页)S_n=(a_1(1-q~n))/(1-q)给出下面的证明较书上的简捷易懂。对等数列{a_n}由它的定义有 a_2/a_1=a_3/a_2=…=a_n/(a_(n-1))=q (a_2+a_3+…+a_n)/(a_1+a_2+…+a_(n-1))=q (S_n-a_1)/(S_n-a_n)=q (S_n-a_1)/(S_n-a_1q~(n-1))=q  相似文献   

16.
2001年全国高中数学联赛一试第13题为:设{a_n}为等差数列,{b_n}为等比数列,且b_1=a_1~2,b_2=a_2~2,b_3=a_3~2,(a_1相似文献   

17.
(一)求有理分式函数y=(a_1x~2 +b_1x+c_1)/(a_2x~2+b_2x+c_2) 型的值域时,如果分子、分母没有公因式时,就可变形式形为 (a_2yg-a_1)x~2+(b_2y-b_1)x+c_2y-c_1=0(*) 设a_2y-a_1≠0时,方程*的判别式Δ≥0的解集为M,还不能确认集合M就是原函数的值域,因为当y=a_1/a_2时,方程*的二次项系数为零,此时必须考察y=a_1/a_2时,方程*是否有实数解,如果没有实数解,则所求的值域就是M,如果有实数解;所求的值域为  相似文献   

18.
我们知道,关于多元二次多项式的因式分解,常常利用待定系数法来解决,但这种方法需解若干个方程组成的方程组,工作量很大。若利用一元二次三项式的因式分解来解决多元二次多项式的因式分解,就可收到事半功倍之效果。 [例1] 把f(x,y)=x~2+3xy+2y~2+4x+5y+3因式分解。分析:若f(x,y)能分解,则它必分解为。f(x,y)=(a_1x+b_1y+c_1)(a_2x+b_2y+c_2)之形式。事实上,就是确定a_1,b_1,c_1,a_2,b_2,c_2。关于对它们的具体确定可在下面过程中来完成。至于原理的推证,请读者自行完成。解:分别分解关于x,y的一元二次三项式。 x~2+4x+3=(x+1)(x+3)……① 2y~2+5y+3=(y+1)(2y+3)……②通过①、②可确定a_1=1,b_1=1,c_1=1,a_2=1,  相似文献   

19.
题目在数列{a_n}中,a_1=1/6,a_n=1/2a_(n-1) 1/2·1/(3~n)(n∈N~*且n≥2),求数列{a_n}的通项公式.解法1:观察法.∵a_1=1/6=1/2-3/1,a_2=1/(2a_1) 1/2·(3~2)/1=5/(36)=5/(4×9)=1/4-1/9,a_3= 1/2a_2 1/2·1/(3~3)=(19)/(216)=(19)/(8×27)=1/8-1/(27),  相似文献   

20.
已知a_1,a_2,…a_n和b_1,b_2,…b_n是实数,则(a_1b_1+a_2b_2+…+a_nb_n)~2≤(a_1~2+a_2~2+…+a_n~2)(b_1~2+b_2~2+…+b_n~2),并且在a_1/b_1=a_2/b_2=…=a_n/b_n等时取等号。上面的不等式叫做柯西不等式,课本中“求  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号