首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
目的:对3种不同深蹲模式进行肌电测试,以期探讨不同模式下动作的合理性,为教学、训练提供一定的理论依据。方法:本文运用文献资料法、实验法和数理统计法对不同模式的肌电测试进行对比分析研究。结果:动作模式1与动作模式2相比,股内侧肌、股直肌、股外侧肌、臀大肌有非常显著性差异(P〈0.01),股二头肌有显著性差异(P〈0.05)。动作模式1与动作模式3相比,股内侧肌、股直肌、股外侧肌、臀大肌有非常显著性差异(P〈0.01),股二头肌有显著性差异(P〈0.05)。动作模式2与动作模式3相比,股内侧肌、臀大肌有非常显著性差异(P〈0.01),股直肌、股外侧肌有显著性差异(P〈0.05),股二头肌没有显著性差异(P〉0.05)。结论:3种不同模式深蹲动作的股外侧肌、股直肌、股内侧肌、股二头肌、臀大肌的积分肌电数值表现出显著性差异,动作模式3优于其它两种动作模式。在深蹲训练中强调臀部肌肉的主动收缩,才能更好的提高下肢力量的作用。  相似文献   

2.

Purpose: This study compared the relative peak torque and normalized electromyographic (EMG) mean frequency (MNF) responses during fatiguing isokinetic muscle actions for men versus women. Method: Twenty men (M age ± SD = 22 ± 2 years) and 20 women (M age ± SD = 22 ± 1 years) performed 50 maximal concentric isokinetic muscle actions of the leg extensors at a velocity of 180°/s while surface EMG signals were detected from the vastus lateralis, rectus femoris, and vastus medialis. The dependent variables were initial, final, and average peak torque; percent decline; the estimated percentage of fast-twitch fibers for the vastus lateralis; and the linear slope coefficients and y-intercepts for normalized EMG MNF versus repetition number. The data were analyzed with independent-samples t tests and 2-way mixed-factorial analyses of variance. Results: The mean initial, final, and average peak torque values for men were greater than those for women. There were no mean differences for percent decline and the estimated percentage of fast-twitch fibers for the vastus lateralis. There were also no sex differences for the linear slope coefficients, but there were differences among the muscles (vastus medialis>vastus lateralis>rectus femoris). The mean y-intercept for the vastus lateralis for men was greater than that for women. Conclusions: Men demonstrated greater peak torque values than those for women, but the declines in peak torque and normalized EMG MNF were similar between the sexes. The vastus medialis was more fatigue-resistant than both the vastus lateralis and rectus femoris.  相似文献   

3.
The aim of this study was to describe and compare the EMG patterns of select lower limb muscles throughout the golf swing, performed with three different clubs, in non-elite middle-aged players. Fourteen golfers performed eight swings each using, in random order, a pitching wedge, 7-iron and 4-iron. Surface electromyography (EMG) was recorded bilaterally from lower limb muscles: tibialis anterior, peroneus longus, gastrocnemius medialis, gastrocnemius lateralis, biceps femoris, semitendinosus, gluteus maximus, vastus medialis, rectus femoris and vastus lateralis. Three-dimensional high-speed video analysis was used to determine the golf swing phases. Results showed that, in average handicap golfers, the highest muscle activation levels occurred during the Forward Swing Phase, with the right semitendinosus and the right biceps femoris muscles producing the highest mean activation levels relative to maximal electromyography (70–76% and 68–73% EMGMAX, respectively). Significant differences between the pitching wedge and the 4-iron club were found in the activation level of the left semitendinosus, right tibialis anterior, right peroneus longus, right vastus medialis, right rectus femuris and right gastrocnemius muscles. The lower limb muscles showed, in most cases and phases, higher mean values of activation on electromyography when golfers performed shots with a 4-iron club.  相似文献   

4.
The objective of this study was to determine whether sprint performance is related to the mechanical (elongation - force relationship of the tendon and aponeurosis, muscle strength) and morphological (fascicle length, pennation angle, muscle thickness) properties of the quadriceps femoris and triceps surae muscle - tendon units. Two groups of sprinters (slow, n = 11; fast, n = 17) performed maximal isometric knee extension and plantar flexion contractions on a dynamometer at 11 different muscle - tendon unit lengths. Elongation of the tendon and aponeurosis of the gastrocnemius medialis and the vastus lateralis was measured using ultrasonography. We observed no significant differences in maximal joint moments at the ankle and knee joints or morphological properties of the gastrocnemius medialis and vastus lateralis between groups (P > 0.05). The fast group exhibited greater elongation of the vastus lateralis tendon and aponeurosis at a given tendon force, and greater maximal elongation of the vastus lateralis tendon and aponeurosis during maximum voluntary contraction (P < 0.05). Furthermore, maximal elongation of the vastus lateralis tendon and aponeurosis showed a significant correlation with 100-m sprint times (r = -0.567, P = 0.003). For the elongation - force relationship at the gastrocnemius medialis tendon and aponeurosis, the two groups recorded similar values. It is suggested that the greater elongation of the vastus lateralis tendon and aponeurosis of the fast group benefits energy storage and return as well as the shortening velocity of the muscle - tendon unit.  相似文献   

5.
This study aimed to compare the muscle activity of lower limbs across typical table tennis strokes. Fourteen high-level players participated in this study in which five typical strokes (backhand top, forehand top, forehand spin, forehand smash, flick) were analysed. Surface electromyography activity (EMG) of eight muscles was recorded (gluteus maximus, biceps femoris, vastus medialis, vastus lateralis, rectus femoris, gastrocnemius medialis, gastrocnemius lateralis, soleus) and normalised to the maximal activity measured during squat jump or isometric maximal voluntary contractions. The forehand spin, the forehand top and the forehand smash exhibited significant higher EMG amplitude when compared with other strokes. Both biceps femoris and gluteus maximus were strongly activated during the smash, forehand spin and forehand top (from 62.8 to 91.7% of maximal EMG activity). Both vastii and rectus femoris were moderately to strongly activated during the forehand spin (from 50.4 to 62.2% of maximal EMG activity) whereas gastrocnemii and soleus exhibited the highest level of activity during the smash (from 67.1 to 92.1% of maximal EMG activity). Our study demonstrates that offensive strokes, such as smash or forehand top, exhibit higher levels of activity than other strokes.  相似文献   

6.
研究目的:对长拳、太极拳冲拳动作进行肌电实验,分析长拳、太极拳完成冲拳动作时所调动的肌肉及其iemg值,得出在研究对象本身无差异情况下,不同拳术冲拳的发力对肌肉的调动情况。研究方法:在肌电实验中,以固定个体为研究对象,通过运用美国noraxon生产的t6无线导遥测肌电对练习长拳、太极拳冲拳时的上下肢肌肉表面肌电特征进行分析。研究结果:长拳冲拳过程中,肌肉活动顺序为腹直肌、三角肌前束、股内侧肌、股直肌、腹外斜肌、股外侧肌、股四头肌、肱三头肌、肱桡肌、竖脊肌;积分肌电显示在长拳冲拳阶段三角肌前束、肱桡肌的积分肌电最高;在整个长拳冲拳过程中,腹外斜肌的肌肉贡献率最大。太极拳冲拳过程中,肌肉活动顺序为肱桡肌、腹外斜肌、股内侧肌、竖脊肌、三角肌前束、腹直肌、股外侧肌、肱三头肌、腹直肌、股四头肌;积分肌电显示在太极拳冲拳阶段肱桡肌、股内侧肌的积分肌电最高;在整个太极拳冲拳过程中,腹内斜肌的机头贡献率最大。研究结论:长拳冲拳过程中,受试者较好完成技术动作,腹直肌首先放电,肌肉力量的发放大部分来源于肱桡肌、三角肌前束和肱三头肌,集中于上肢腰部和手臂。太极拳冲拳过程中,受试者未能掌握技术动作,肌肉发力顺序不符合太极拳冲拳技术要求。  相似文献   

7.
Six competitive soccer players were recruited to examine EMG activation in three quadriceps muscles during a kicking accuracy task. Participants performed three maximum instep place kicks of a stationary ball, 11 m perpendicular from the centre of the goal line towards targets (0.75 m(2)) in the four corners of the goal. Surface EMG of the vastus lateralis, vastus medialis, and rectus femoris of the kicking leg was normalized and averaged across all participants to compare between muscles, targets, and the phase of the kick. Although no significant difference were observed between muscles or kick phases, kicks to the right targets produced significantly greater muscle activity than those towards the left targets (P < 0.01). In addition, kicks towards the top right target demonstrated significantly greater muscle activity than towards the top and bottom left (P < 0.01). Under accurate soccer shooting conditions, kicks aimed to the top right corner of the goal demonstrated a higher level of quadriceps muscle activation than those towards the other corners.  相似文献   

8.
The aim of this study was to observe changes in the kinematics and muscle activities when barefoot running was initially adopted by six habitually shod, recreational rearfoot striking runners. Participants ran on a treadmill shod for 5 min, completed 3 × 10-min intervals of barefoot running and then completed a final minute of shod running at a self-selected pace. Dependent variables (speed, joint angles at foot-contact, joint range of motion (ROM), mean and peak electromyography (EMG) activity) were compared across conditions using repeated measures ANOVAs. Anterior pelvic tilt and hip flexion significantly decreased during barefoot conditions at foot contact. The ROM for the trunk, pelvis, knee and ankle angles decreased during the barefoot conditions. Mean EMG activity was reduced for biceps femoris, gastrocnemius lateralis and tibialis anterior during barefoot running. The peak activity across the running cycle decreased in biceps femoris, vastus medialis, gastrocnemius medialis and tibialis anterior during barefoot running. During barefoot running, tibialis anterior activity significantly decreased during the pre-activation and initial contact phases; gastrocnemius lateralis and medialis activity significantly decreased during the push-off phase. Barefoot running caused immediate biomechanical and neuromuscular adaptations at the hip and pelvis, which persisted when the runners donned their shoes, indicating that some learning had occurred during an initial short bout of barefoot running.  相似文献   

9.
Abstract

The aim of the present study was to analyse differences in muscle response and mechanical characteristics of the vastus medialis, rectus femoris, vastus lateralis, and biceps femoris in elite volleyball players of both sexes using tensiomyography. To this end, 47 players of nine nationalities playing for teams in the men's and women's Spanish Superleagues were assessed. The sample comprised 22 women (age 24.6±4.3 years; weight 72.14±10.06 kg; height 178.40±8.50 cm) and 25 men (age 25.0±4.3 years; weight 88.76±9.07 kg; height 194.71±7.84 cm). Tensiomyography was used to assess muscular response and muscular mechanical characteristics. For this purpose, the following variables were analysed: maximum radial displacement of muscle belly and normalized response speed. The findings show, both in men and women, a higher normalized response speed score in the vastus lateralis and vastus medialis compared with the rectus femoris and biceps femoris. A marked lateral symmetry of maximum radial displacement of the muscle belly was also observed in the musculature of the lower limbs, with no statistically significant differences being detected in either men or women. There were, however, clear differences in terms of normalized response speed between male and female volleyball players: women displayed a more pronounced difference in the normalized response speed of the musculature responsible for extension (vastus medialis, rectus femoris, and vastus lateralis) and flexion (biceps femoris) of the knee joint than men. Moreover, tensiomyography proved to be a highly sensitive tool for detecting such changes.  相似文献   

10.
Previous studies analysing electromyograms (EMGs) from indwelling electrodes have indicated that fast-twitch motor units are selectively recruited for low-intensity eccentric contractions. The aim of this study was to compare the frequency content of surface EMGs from quadriceps muscles during eccentric and concentric contractions at various contraction intensities. Electromyograms were recorded from the rectus femoris, vastus lateralis and vastus medialis muscles of 10 men during isokinetic (1.05 rad x s(-1)) eccentric and concentric knee extension contractions at 25%, 50%, 75% and 100% of maximal voluntary contraction (MVC) for each contraction mode. Additionally, isometric contractions (70 degrees) were performed at each intensity. The mean frequency and root mean square (RMS) of the surface EMG were computed. Mean frequency was higher for eccentric than concentric contractions at 25% (P < 0.01), 50% (P < 0.01) and 75% (P < 0.05) but not at 100% MVC. It increased with increasing contraction intensity for isometric (P < 0.001) and concentric (P < 0.01) contractions but not for eccentric contractions (P = 0.27). The EMG amplitude (RMS) increased with increasing contraction intensity similarly in each contraction mode (P < 0.0001). Higher mean frequencies for eccentric than concentric contractions at submaximal contraction intensities is consistent with more fast-twitch motor units being active during eccentric contractions.  相似文献   

11.
Abstract

The purpose of this study was to examine the changes in the metabolic state of quadriceps femoris muscles using transverse relaxation time (T2), measured by muscle functional magnetic resonance (MR) imaging, after inactive or active recovery exercises with different intensities following high-intensity knee-extension exercise. Eight healthy men performed recovery sessions with four different conditions for 20 min after high-intensity knee-extension exercise on separate days. During the recovery session, the participants conducted a light cycle exercise for 20 min using a cycle (50%, 70% and 100% of the lactate threshold (LT), respectively: active recovery), and inactive recovery. The MR images of quadriceps femoris muscles were taken before the trial and after the recovery session every 30 min for 120 min. The percentage changes in T2 for the rectus femoris and vastus medialis muscles after the recovery session in 50%LT and 70%LT were significantly lower than those in either inactive recovery or 100%LT. There were no significant differences in those for vastus lateralis and vastus intermedius muscles among the four trials. The percentage changes in T2 of rectus femoris and vastus medialis muscles after the recovery session in 50%LT and 70%LT decreased to the values before the trial faster than those in either inactive recovery or 100%LT. Those of vastus lateralis and vastus intermedius muscles after the recovery session in 50%LT and 70%LT decreased to the values before the trial faster than those in 100%LT. Although the changes in T2 after active recovery exercises were not uniform in exercised muscles, the results of this study suggest that active recovery exercise with the intensities below LT are more effective to recover the metabolic state of quadriceps femoris muscles after intense exercise than with either intensity at LT or inactive recovery.  相似文献   

12.
Abstract

The objective of this study was to determine whether sprint performance is related to the mechanical (elongation – force relationship of the tendon and aponeurosis, muscle strength) and morphological (fascicle length, pennation angle, muscle thickness) properties of the quadriceps femoris and triceps surae muscle – tendon units. Two groups of sprinters (slow, n = 11; fast, n = 17) performed maximal isometric knee extension and plantar flexion contractions on a dynamometer at 11 different muscle – tendon unit lengths. Elongation of the tendon and aponeurosis of the gastrocnemius medialis and the vastus lateralis was measured using ultrasonography. We observed no significant differences in maximal joint moments at the ankle and knee joints or morphological properties of the gastrocnemius medialis and vastus lateralis between groups (P > 0.05). The fast group exhibited greater elongation of the vastus lateralis tendon and aponeurosis at a given tendon force, and greater maximal elongation of the vastus lateralis tendon and aponeurosis during maximum voluntary contraction (P < 0.05). Furthermore, maximal elongation of the vastus lateralis tendon and aponeurosis showed a significant correlation with 100-m sprint times (r = ?0.567, P = 0.003). For the elongation – force relationship at the gastrocnemius medialis tendon and aponeurosis, the two groups recorded similar values. It is suggested that the greater elongation of the vastus lateralis tendon and aponeurosis of the fast group benefits energy storage and return as well as the shortening velocity of the muscle – tendon unit.  相似文献   

13.
The contribution of core neuromuscular control to the dynamic stability of badminton players with and without knee pain during backhand lunges has not been investigated. Accordingly, this study compared the kinematics of the lower extremity, the trunk movement, the muscle activation and the balance performance of knee-injured and knee-uninjured badminton players when performing backhand stroke diagonal lunges. Seventeen participants with chronic knee pain (injured group) and 17 healthy participants (control group) randomly performed two diagonal backhand lunges in the forward and backward directions, respectively. This study showed that the injured group had lower frontal and horizontal motions of the knee joint, a smaller hip–shoulder separation angle and a reduced trunk tilt angle. In addition, the injured group exhibited a greater left paraspinal muscle activity, while the control group demonstrated a greater activation of the vastus lateralis, vastus medialis and medial gastrocnemius muscle groups. Finally, the injured group showed a smaller distance between centre of mass (COM) and centre of pressure, and a lower peak COM velocity when performing the backhand backward lunge tasks. In conclusion, the injured group used reduced knee and trunk motions to complete the backhand lunge tasks. Furthermore, the paraspinal muscles contributed to the lunge performance of the individuals with knee pain, whereas the knee extensors and ankle plantar flexor played a greater role for those without knee pain.  相似文献   

14.
The purpose of this study was to investigate asymmetry of muscle activation in participants with different levels of experience and performance with cycling. Two separate experiments were conducted, one with nine cyclists and one with nine non-cyclists. The experiments involved incremental maximal and sub-maximal constant load cycling tests. Bilateral surface electromyography (EMG) and gross and net muscle efficiency were assessed. Analyses of variance in mixed linear models and t-tests were conducted. The cyclists in Experiment 1 presented higher gross efficiency (P < 0.05), whereas net efficiency did not differ between the two experiments (21.3 ± 1.4% and 19.8 ± 1.0% for cyclists and non-cyclists, respectively). The electrical muscle activity increased significantly with exercise intensity regardless of leg preference in both experiments. The coefficient of variation of EMG indicated main effects of leg in both experiments. The non-preferred leg of non-cyclists (Experiment 2) presented statistically higher variability of muscle activity in the gastrocnemius medialis and vastus lateralis. Our findings suggest similar electrical muscle activity between legs in both cyclists and non-cyclists regardless of exercise intensity. However, EMG variability was asymmetric and appears to be strongly influenced by exercise intensity for cyclists and non-cyclists, especially during sub-maximal intensity. Neural factors per se do not seem to fully explain previous reports of pedalling asymmetries.  相似文献   

15.
We analyzed the effect of an 8-week strength training (ST) program on the rate of force development (RFD) and electromyographic activity (EMG) in older women. Seventeen women (M age = 63.4 years, SD = 4.9) without previous ST experience were randomly assigned to either a control (n=7) or training (n=10) group. A leg-press isometric test was used for assessment. ST (three sessions/ week, three sets of 10-12 repetition maximum, five different exercises) induced significant increases (p < .05) on peak RPD (48.4%) and on RFD) and EMG of vastus medialis at time intervals of 0-50, 0-100, 0-150, and 0-200 ms (41.1-69.2% and 43.8-64.3%, respectively). Therefore, ST resulted in favorable changes in neuromuscular responses in older women.  相似文献   

16.
The purpose of this study was to examine whether differences in construction between the compact ski, the racing ski and the soft ski influence the behavioural and electromuscular responses of the user. Eight qualified male ski instructors performed two ‘shuss’ trials and three different basic turns. Six muscles (M. biceps femoris, M. gastrocnemius lateralis and medialis, M. rectus femoris, M. vastus lateralis and M. tibialis anterior) were studied, using a conventional but portable electromyographic (EMG) registration with telemetric synchronization, active electrodes and a six‐channel portable data recorder. Muscle contractions were continuously registered and visualized in raw EMG form and linear envelopes. The differences between the mean rectified EMG data of dynamic contractions while skiing and the mean rectified EMG data of the maximal voluntary contraction were used in the primary analysis of data, from which the participation levels of the muscles investigated could be calculated for each type of ski. Based on this comparison, differences between the effects on muscle activity of the three types of skis were unimportant. In a second phase, the normalized linear envelopes of all subjects were graphically superimposed and averaged. This was performed for each muscle, for each movement, for each leg and for each ski tested. The EMG data were considered in combination with anthropometric values, with snow characteristics and with the velocity of skiing. This study showed systematic differences between the use of the racing, soft and compact ski. On average the soft ski showed the lowest muscle activity patterns and thus the most economical muscular efforts for all muscles investigated and within all movements.  相似文献   

17.
The purpose of this study was to examine whether differences in construction between the compact ski, the racing ski and the soft ski influence the behavioural and electromuscular responses of the user. Eight qualified male ski instructors performed two 'shuss' trials and three different basic turns. Six muscles (M. biceps femoris, M. gastrocnemius lateralis and medialis, M. rectus femoris, M. vastus lateralis and M. tibialis anterior) were studied, using a conventional but portable electromyographic (EMG) registration with telemetric synchronization, active electrodes and a six-channel portable data recorder. Muscle contractions were continuously registered and visualized in raw EMG form and linear envelopes. The differences between the mean rectified EMG data of dynamic contractions while skiing and the mean rectified EMG data of the maximal voluntary contraction were used in the primary analysis of data, from which the participation levels of the muscles investigated could be calculated for each type of ski. Based on this comparison, differences between the effects on muscle activity of the three types of skis were unimportant. In a second phase, the normalized linear envelopes of all subjects were graphically superimposed and averaged. This was performed for each muscle, for each movement, for each leg and for each ski tested. The EMG data were considered in combination with anthropometric values, with snow characteristics and with the velocity of skiing. This study showed systematic differences between the use of the racing, soft and compact ski. On average the soft ski showed the lowest muscle activity patterns and thus the most economical muscular efforts for all muscles investigated and within all movements.  相似文献   

18.
我国部分优秀男子跳远运动员起跳环节肌肉用力特征   总被引:2,自引:1,他引:1  
通过表面肌电遥测和高速摄影同步测试,揭示优秀跳远运动员起跳环节肌肉用力特征.结果显示:在起跳环节中,股外侧肌、股内侧肌、股二头肌、比目鱼肌、腓肠肌是起跳腿的主要用力肌肉;在起跳腿即将着地前,所测肌肉均有较明显的预激活现象;着地后,肌肉用力的激活顺序依次为胫骨前肌、股二头肌与股内侧肌、股外侧肌、比目鱼肌、腓肠肌内侧头、股直肌、臀大肌;肌肉用力的失活顺序依次为胫骨前肌、股直肌、股内侧肌、股外侧肌、臀大肌、腓肠肌、股二头肌、比目鱼肌;肌肉用力持续时间长短依次为股二头肌、比目鱼肌、股外侧肌、腓肠肌内侧头和股内侧肌、臀大肌、股直肌、胫骨前肌.起跳腿拮抗肌共同收缩的特征为:缓冲阶段踝关节拮抗肌共同收缩最强烈,而在蹬伸阶段膝关节拮抗肌共同收缩最强烈.  相似文献   

19.
We hypothesized that imagery training would improve the fast onset of neuromuscular activation and thereby fast knee extensor isometric torque development. Forty young healthy participants, not involved in strength training, were assigned to one of four groups: physical training, imagery training, placebo training or control. The three training groups had three 15 min sessions per week for 4 weeks, with a 90 ° knee angle but were tested also at 120 °. At 90 ° knee angle, maximal torque increased (-8%) similarly in all three training groups. The torque-time integral (contractile impulse) over the first 40 ms after torque onset (TTI40) increased (P < 0.05) after physical training (by -100%), but only at 90 °. This increase was significantly different from the delta values (change pre to post) in the control and placebo groups, whereas delta values in the imagery group were similar to those in the placebo group. The increases in TTI40 following physical training were related (r (2) = 0.81, P < 0.05) to significant increases of knee extensor rectified surface EMG at torque onset (EMG40). In conclusion, only physical training led to a knee angle specific increase of contractile impulse that was significantly different from placebo and controls and that was related to improved onset of neuromuscular activation.  相似文献   

20.

We analyzed the effect of an 8-week strength training (ST) program on the rate of force development (RFD) and electromyographic activity (EMG) in older women. Seventeen women (M age = 63.4 years, SD = 4.9) without previous ST experience were randomly assigned to either a control (n = 7) or training (n = 10) group. A leg-press isometric test was used for assessment. ST (three sessions/ week, three sets of 10–12 repetition maximum, five different exercises) induced significant increases (p < .05) on peak RFD (48.4%) and on RFD and EMG of vastus medialis at time intervals of 0–50, 0–100, 0–150, and 0–200 ms (41.1–69.2% and 43.8– 64.3%, respectively). Therefore, ST resulted in favorable changes in neuromuscular responses in older women.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号