首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以2005年7月21日中国汇率制度改革事件为契机,实证研究了人民币升值以来汇率与中国沪深两市主要股票指数之间的长期和短期相互关系.结果表明,长期运行关系来说,汇率与各主要股指有稳定的均衡关系;短期波动状况来说,汇率对A股指数有单向的Granger因果传递关系,而与B股指数之间没有因果传导关系.  相似文献   

2.
BackgroundRhodotorula glutinis is capable of synthesizing numerous valuable metabolites with extensive potential industrial usage. This paper reports the effect of initial culture medium pH on growth and protein, lipid, and carotenoid biosynthesis by R. glutinis.ResultsThe highest biomass yield was obtained in media with pH 4.0–7.0, and the value after 72 h was 17.2–19.4 gd.w./L. An initial pH of the medium in the range of 4.0–7.0 has no significant effect on the protein (38.5–41.3 g/100 gd.w.), lipid (10.2–12.7 g/100 gd.w.), or carotenoid (191.7–202.9 μg/gd.w.) content in the biomass or on the profile of synthesized fatty acids and carotenoids. The whole pool of fatty acids was dominated by oleic (48.1–53.4%), linoleic (21.4–25.1%), and palmitic acids (13.0–15.8%). In these conditions, the yeast mainly synthesized torulene (43.5–47.7%) and β-carotene (34.7–38.6%), whereas the contribution of torularhodin was only 12.1–16.8%. Cultivation in medium with initial pH 3.0 resulted in a reduction in growth (13.0 gd.w./L) and total carotenoid (115.8 μg/gd.w.), linoleic acid (11.5%), and torularhodin (4.5%) biosynthesis.ConclusionThe different values of initial pH of the culture medium with glycerol and deproteinized potato wastewater had a significant effect on the growth and protein, lipid, and carotenoid biosynthesis by R. glutinis.  相似文献   

3.
BackgroundCatalase (CAT) is an important enzyme that degrades H2O2 into H2O and O2. To obtain an efficient catalase, in this study, a new strain of high catalase-producing Serratia marcescens, named FZSF01, was screened and its catalase was purified and characterized.ResultsAfter optimization of fermentation conditions, the yield of catalase produced by this strain was as high as 51,468 U/ml. This catalase was further purified using two steps: DEAE-fast flow and Sephedex-G150. The purified catalase showed a specific activity of 197,575 U/mg with a molecular mass of 58 kDa. This catalase exhibited high activity at 20–70°C and pH 5.0–11.0. Km of the catalase was approximately 68 mM, and Vmax was 1886.8 mol/min mg. This catalase was further identified by LC–MS/MS, and the encoding gene was cloned and expressed in Escherichia coli BL21 (DE3) with a production of 17,267 ± 2037 U/ml.ConclusionsTo our knowledge, these results represent one of the highest fermentation levels reported among current catalase-producing strains. This FZSF01 catalase may be suitable for several industrial applications that comprise exposure to alkaline conditions and under a wide range of temperatures.  相似文献   

4.
BackgroundA simple, rapid, low-cost and environmentally friendly method was developed to determine dopamine (DA) in the presence of ascorbic (AA) and uric acid (UA) based on a novel technique to prepare a graphene–chitosan (GR–CS) nanocomposite and modify it on the surface of carbon paste electrode (CPE). For our design, CS acts as a media to disperse and stabilize GR, and then GR plays a key role to selective and sensitive determination of DA.ResultsUnder physiological conditions, the linear range for dopamine was determined from 1 × 10- 4 to 2 × 10- 7 mol/L with a good correlation coefficient of 0.9961 in the presence of 1000-fold interference of AA and UA. The detection limit was estimated to be 9.82 × 10- 8 mol/L (S/N = 3). In order to study the stability and reproducibility, GR/CS/CPE underwent successive measurements in 10 times and then tested once a d for 30 d. The result exhibited 98.25% and 91.62% activities compared with the original peak current after 10-time measurements and 30-d storage.ConclusionThe GR/CS/CPE has wide linear concentration range, low detection limit, and good reproducibility and stability, which suggests that our investigations provide a promising alternative for clinic DA determination.  相似文献   

5.
BackgroundAgave tequilana has a great economic importance in Mexico in order to produce alcoholic beverages and bioenergy. However, in this species the structure and organization of the rDNAs in the genome are limited, and it represents an obstacle both in their genetic research and improvement as well. rDNA copy number variations per eukaryotic genome have been considered as a source of genetic rearrangements. In this study, the copy number of 18S and 5S rDNAs in the A. tequilana genome was estimated, and an absolute quantitative qPCR assay and genome size was used. In addition, an association between the rDNAs copy number and physical mapping was performed to confirm our results.ResultsThe analysis were successfully applied to determine copy number of 18S and 5S rDNAs in A. tequilana genome, showing high reproducibility with coefficient of variation (CV) values of 0.014–0.0129%, respectively. A variation of 51 times in the copy number the 18s regarding 5s rDNA was found, thus contributing to genome size of 1.47 and 8.38 × 10-3%, respectively. Similarly, data show a linear relationship (R [2] = 0.992) between rDNA copy number and the detected signals for each of the loci by FISH. The comparison of the rDNA copy number of agave showed differential relationship with other organisms and it may be due to evolutionary ecology.ConclusionsResults show that the proposed method a) can correctly detect the rDNA copy number, b) could be used as species-specific markers and c) might help in understanding the genetic diversity, genome organization and evolution of this species.  相似文献   

6.
BackgroundThe paper reports on the utilization of palm kernel oil (PKO) as a low cost renewable substrate for medium-chain-length poly-3-hydroxyalkanoates (mcl-PHA) production by Pseudomonas putida BET001. Investigation on the effects of selected key variables on growth, mixed free fatty acids consumption and mcl-PHA production by the bacterial culture in the shaken flask system were carried out along with its kinetic modeling.ResultsThe biomass production, fatty acids consumption and mcl-PHA production were found favorable when the strain was cultured in mineral medium at pH 6–7, 28°C, aeration surface-to-volume ratio of 0.4 × 106 m- 1, 250 rpm agitation rate for 48 h. Mcl-PHA production by this strain showed mixed growth and non-growth associated components as described by Luedeking–Piret kinetic model.ConclusionThe findings of this study provided add to the literature on key variables in for achieving good microbial growth and mcl-PHA production in shake flasks culture. In addition, suitable kinetic model to describe cultivation in this system was also presented.  相似文献   

7.
BackgroundAt present, species known as camote de cerro (Dioscorea spp.) are found only in the wilderness in Mexico, but their populations are extremely depleted because they are indiscriminately collected, it is urgent to evaluate the conservation status of these plants in order to design conservation genetics programs. In this study, genetic diversity parameters along with cluster analysis based on Jaccard's coefficient were estimated with the objective to assess the efficiency of Random Amplified Polymorphic DNA (RAPD), Inter Simple Sequence Repeat (ISSR), Amplified Fragment Length Polymorphism (AFLP) and Inverse Sequence Tagged Repeat (ISTR) molecular DNA markers in the Dioscorea genus.ResultsThe polymorphic information contents were quite similar for all markers (≈ 0.48). Genetic variation of Dioscorea spp., in terms of average heterozygosity was lower with ISTR (0.36), and higher when other markers were used (RAPD = 0.43; ISSR = 0.45 and AFLP = 0.47).ConclusionThis indicates an important level of genetic differences despite the fact that the plant is asexually propagated. Based on the diversity statistics, any marker tested in present work can be recommended for use in large-scale genetic studies of populations. However, the low correlations among different molecular marker systems show the importance of the complementarity of the information that is generated by different markers for genetic studies involving estimation of polymorphism and relationships.  相似文献   

8.
BackgroundChlorophytum borivilianum is a rare medicinal plant originally distributed throughout the forest of India. The tubers of C. borivilianum are used as an aphrodisiac and impotence supplement. The propagation of C. borivilianum is possible through seeds and tubers, but conventional methods may take several months. Hence in vitro technique of shoot regeneration could be an efficient alternative means of propagating the species. Latest study reported microtuberization of C. borivilianum but there is no sufficient study on a rapid method for shoot multiplication and elongation.ResultsYoung shoot buds of C. borivilianum were cultured on MS medium containing 6-benzylaminopurine (BAP) and Kinetin (Kn), both at 0, 8.88, 17.8 and 26.6 μM, either individually or in combinations. Proliferated shoots were subcultured on fresh medium of the same constituents on week 3 of culture for further shoot multiplication and elongation. BAP alone (8.88–26.6 μM) was significantly effective on shoot multiplication, while Kn alone (8.88–26.6 μM) was significantly effective on shoot elongation compared to the control containing MS basal medium without any plant growth regulator. However, combination of both cytokinins stimulated an interaction producing higher shoot number and shoot length compared to their individual application.ConclusionsThe most suitable combination was 8.88 μM BAP + 8.88 μM Kn, reaching a mean shoot number of 10.83 and shoot length of 6.85 cm.  相似文献   

9.
BackgroundAspartic proteases are a subfamily of endopeptidases that are useful in a variety of applications, especially in the food processing industry. Here we describe a novel aspartic protease that was purified from Peptidase R, a commercial protease preparation derived from Rhizopus oryzae.ResultsAn aspartic protease sourced from Peptidase R was purified to homogeneity by anion exchange chromatography followed by polishing with a hydrophobic interaction chromatography column, resulting in a 3.4-fold increase in specific activity (57.5 × 103 U/mg) and 58.8% recovery. The estimated molecular weight of the purified enzyme was 39 kDa. The N-terminal sequence of the purified protein exhibited 63–75% identity to rhizopuspepsins from various Rhizopus species. The enzyme exhibited maximal activity at 75°C in glycine–HCl buffer, pH 3.4 with casein as the substrate. The protease was stable at 35°C for 60 min and had an observed half-life of approximately 30 min at 45°C. Enzyme activity was not significantly inhibited by chelation with ethylenediamine tetraacetic acid (EDTA), and the addition of metal ions to EDTA-treated protease did not significantly change enzyme activity, indicating that proteolysis is not metal ion-dependent. The purified enzyme was completely inactivated by the aspartic protease inhibitor Pepstatin A.ConclusionBased on the observed enzyme activity, inhibition profile with Pepstatin A, and sequence similarity to other rhizopuspepsins, we have classified this enzyme as an aspartic protease.  相似文献   

10.
郑义  秦炳涛 《科研管理》2016,37(8):130-139
本文基于中国1970-2010年能源消费、劳动、资本、碳排放及产出数据运用PSS(2001)协整检验法以及TY(1995)因果检验法研究这些变量间的短期动态关系及其长期协整关系。实证结果表明这5个变量之间存在长期协整关系。短期内能源消费、劳动以及资本对经济增长均有显著的正效应,碳排放的作用不显著;从长期来看只有劳动、资本对经济增长有显著的正效应。基于因果检验法我们发现能源消费、碳排放与实际产出均呈现双向格兰杰因果关系,且存在从能源消费到碳排放的单向格兰杰因果关系。结论表明中国若要有效减排,短期内势必要以适当降低经济发展速度为代价,但是从长期来看政府推行的节能减排战略不会阻滞经济增长。  相似文献   

11.
BackgroundIn the industrial biotechnology, ligninolytic enzymes are produced by single fungal strains. Experimental evidence suggests that co-culture of ligninolytic fungi and filamentous microfungi results in an increase laccase activity. In this topic, only the ascomycete Trichoderma spp. has been studied broadly. However, fungal ligninolytic-filamentous microfungi biodiversity interaction in nature is abundant and poorly studied. The enhancement of laccase and manganese peroxidase (MnP) activities of Trametes maxima as a function of time inoculation of Paecilomyces carneus and under several culture conditions using Plackett–Burman experimental design (PBED) were investigated.ResultsThe highest increases of laccase (12,382.5 U/mg protein) and MnP (564.1 U/mg protein) activities were seen in co-cultures I3 and I5, respectively, both at 10 d after inoculation. This level of activity was significantly different from the enzyme activity in non-inoculated T. maxima (4881.0 U/mg protein and 291.8 U/mg protein for laccase and MnP, respectively). PBED results showed that laccase was increased (P < 0.05) by high levels of glucose, (NH4)2SO4 and MnSO4 and low levels of KH2PO4, FeSO4 and inoculum (P < 0.05). In addition, MnP activity was increased (P < 0.05) by high yeast extract, MgSO4, CaCl2 and MnSO4 concentrations.ConclusionsInteraction between indigenous fungi: T. maximaP. carneus improves laccase and MnP activities. The inoculation time of P. carneus on T. maxima plays an important role in the laccase and MnP enhancement. The nutritional requirements for enzyme improvement in a co-culture system are different from those required for a monoculture system.  相似文献   

12.
BackgroundEndophytic bacteria are ubiquitous in all plant species contributing in host plant's nutrient uptake and helping the host to improve its growth. Moringa peregrina which is a medicinal plant, growing in arid region of Arabia, was assessed for the presence of endophytic bacterial strains.ResultsPCR amplification and sequencing of 16S rRNA of bacterial endophytes revealed the 5 endophytic bacteria, in which 2 strains were from Sphingomonas sp.; 2 strains from Bacillus sp. and 1 from Methylobacterium genus. Among the endophytic bacterial strains, a strain of Bacillus subtilis LK14 has shown significant prospects in phosphate solubilization (clearing zone of 56.71 mm after 5 d), ACC deaminase (448.3 ± 2.91 nM α-ketobutyrate mg- 1 h- 1) and acid phosphatase activity (8.4 ± 1.2 nM mg- 1 min- 1). The endophytic bacteria were also assessed for their potential to produce indole-3-acetic acid (IAA). Among isolated strains, the initial spectrophotometry analysis showed significantly higher IAA production by Bacillus subtilis LK14. The diurnal production of IAA was quantified using multiple reactions monitoring method in UPLC/MS–MS. The analysis showed that LK14 produced the highest (8.7 μM) IAA on 14th d of growth. Looking at LK14 potentials, it was applied to Solanum lycopersicum, where it significantly increased the shoot and root biomass and chlorophyll (a and b) contents as compared to control plants.ConclusionThe study concludes that using endophytic bacterial strains can be bio-prospective for plant growth promotion, which might be an ideal strategy for improving growth of crops in marginal lands.  相似文献   

13.
BackgroundTextile and dye industries pose a serious threat to the environment. Conventional methods used for dye treatment are generally not always effective and environmentally friendly. This drove attention of scores of researchers to investigate alternative methods for the biodegradation of dyes using fungal strains. In this work, white-rot fungus (Panus tigrinus) was used as a biosorbent for the decolorization of Reactive Blue 19. The process parameters that were varied were initial concentration (50–150 mg/L), contact time (30–90 min), and pH (2–6). In addition, to gain important data for the evaluation of a sorption process, the equilibrium and kinetics of the process were determined.ResultsWhite-rot fungus showed great potential in decolorizing Azo dyes. The strain showed the maximum decolorization of 83.18% at pH 2, a contact time of 90 min, and an initial concentration of 50 mg/L. The Langmuir isotherm described the uptake of the Reactive Blue 19 dye better than the Freundlich isotherm. Analysis of the kinetic data showed that the dye uptake process followed the pseudo second-order rate expression.ConclusionThe biosorption process provided vital information on the process parameters required to obtain the optimum level of dye removal. The isotherm study indicated the homogeneous distribution of active sites on the biomass surface, and the kinetic study suggested that chemisorption is the rate-limiting step that controlled the biosorption process. According to the obtained results, P. tigrinus biomass can be used effectively to decolorize textile dyes and tackle the pollution problems in the environment.  相似文献   

14.
BackgroundThe Tibetan pig is a pig breed with excellent grazing characteristics indigenous to the Qinghai–Tibet plateau in China. Under conditions of barn feeding, 90% of its diet consists of forage grass, which helps meet its nutritional needs. The present study aimed to isolate and identify a cellulolytic bacterium from the Tibetan pig's intestine and investigate cellulase production by this bacterium. The study purpose is to provide a basic theory for the research and development of herbivore characteristics and to identify a source of probiotics from the Tibetan pig.ResultsA cellulolytic bacterium was isolated from a Tibetan pig's intestine and identified based on morphological, physiological, and biochemical characteristics as well as 16S rRNA analysis; it was designated Bacillus subtilis BY-2. Examination of its growth characteristics showed that its growth curve entered the logarithmic phase after 8–12 h and the stable growth phase being between 20 and 40 h. The best carbon source for fermentation was 1% corn flour, while 2% peptone and yeast powder compound were the best nitrogen sources. The initial pH during fermentation was 5.5, with 4% inoculum, resulting in a high and stable amount of enzyme in 24–48 h.ConclusionsThe isolated BY-2 strain rapidly grew and produced cellulase. We believe that BY-2 cellulase can help overcome the shortage of endogenous animal cellulase, improve the utilization rate of roughage, and provide strain sources for research on porcine probiotics.  相似文献   

15.
BackgroundLysozyme plays a crucial role in innate immunity with its well-recognized bacteriolytic activity. In this study, the influence of expression parameters (inoculation volume, culture volume, growth time, induction temperature and time, initial pH and methanol concentration) on human lysozyme (HLZ) production in recombinant P. pastoris SMD1168 was investigated through Plackett–Burman (PB) design and response surface methodology (RSM).ResultsIt was revealed that induction temperature, induction time and culture volume had significant influence (P < 0.01) on HLZ expression level, which were elected for further optimization with three-dimensional response surface designs for enhanced HLZ production. The highest lysozyme activity reached 3301 U/mL under optimized conditions (at 23.5°C for 90 h with culture volume of 48 mL) in shake flask, which increased 2.2 fold compared with that achieved with the standard protocol (Invitrogen). When high-cell-density fermentation of the recombinant Pichia pastoris was performed in a 15 L fermenter under optimized conditions, the extracellular lysozyme activity reached 47,680 U/mL. SDS-PAGE analysis of the product demonstrated that HLZ was produced as a single major protein with a molecular weight of approximately 14.7 kDa, consistent with its expected size.ConclusionsThe results indicated that the optimized culture conditions using PB design and RSM significantly enhanced the expression level of HLZ, and the Pichia expression system for HLZ production was successful and industrially promising.  相似文献   

16.
BackgroundThe yield of almonds [Prunus dulcis (Mill.) D.A. Webb] could be low due to climatic problems and any factor improving kernel size and weight, such as the use of plant bioregulators (PBRs), should be beneficial.ResultsThree plant bioregulators: 24-epibrassinolide (BL), gibberellic acid (GA3) and kinetin (KN) were applied at three spray concentrations to Non Pareil and Carmel cultivars, at two phenological stages during bloom, in the 2014 and 2015 seasons. The results showed significant differences (P < 0.0001). For total dry weight of Non Pareil, the best treatment was BL (30 mg·L-1), with an average of 1.45 g, while the control was 1.30 g, at pink button during 2015. For Carmel, the best dry weight was 1.23 g, achieved with BL (30 mg·L-1) at fallen petals in both seasons. The average dry weight of the controls varied between 1.13 and 1.18 g. The greatest almond lengths and widths in Non Pareil were 24.98 mm and 15.05 mm, achieved with BL (30 mg·L-1) and KN (50 μL·L-1) treatments, respectively, applied at pink button in 2015. In Carmel, the greatest length and width were 24.38 and 13.44 mm, obtained with BL (30 mg·L-1) applied at the stages of pink button and fallen petals, respectively, in 2015. The control reached lengths between 22.33 and 23.38 mm, and widths between 11.99 and 12.93 mm.ConclusionsThe use of the bioregulators showed significant favorable effects on dry weight, length and width of kernels at harvest, in both cultivars.  相似文献   

17.
The buffering effect of acetate on hydrogen production during glucose fermentation by Ethanoligenens harbinense B49 was investigated compared to phosphate, a widely used fermentative hydrogen production buffer. Specific concentrations of sodium acetate or phosphate were added to batch cultures, and the effects on hydrogen production were comparatively analyzed using a modified Gompertz model. Adding 50 mM acetate or phosphate suppressed the hydrogen production peak and slightly extended the lag phase. However, the overall hydrogen yields were 113.5 and 108.5 mmol/L, respectively, and the final pH was effectively controlled. Acetate buffered against hydrogen production more effectively than did phosphate, promoting cell growth and preventing decreased pH. At buffer concentrations 100–250 mM, the maximum hydrogen production was barely suppressed, and the lag phase extended past 7 h. Therefore, although acetate inhibits hydrogen production, using acetate as a buffer (like phosphate) effectively prevented pH drops and increased substrate consumption, enhancing hydrogen production.  相似文献   

18.
BackgroundBanana (Musa spp.) is an important staple food, economic crop, and nutritional fruit worldwide. Conventional breeding has been seriously hampered by their long generation time, polyploidy, and sterility of most cultivated varieties. Establishment of an efficient regeneration and transformation system for banana is critical to its genetic improvement and functional genomics.ResultsIn this study, a vigorous and repeatable transformation system for banana using direct organogenesis was developed. The greatest number of shoots per explant for all five Musa varieties was obtained using Murashige and Skoog medium supplemented with 8.9 μM benzylaminopurine and 9.1 μM thidiazuron. One immature male flower could regenerate 380–456, 310–372, 200–240, 130–156, and 100–130 well-developed shoots in only 240–270 d for Gongjiao, Red banana, Rose banana, Baxi, and Xinglongnaijiao, respectively. Longitudinal sections of buds were transformed through particle bombardment combined with Agrobacterium-mediated transformation using a promoterless β-glucuronidase (GUS) reporter gene; the highest transformation efficiency was 9.81% in regenerated Gongjiao plantlets in an optimized selection medium. Transgenic plants were confirmed by a histochemical assay of GUS, polymerase chain reaction, and Southern blot.ConclusionsOur robust transformation platform successfully generated hundreds of transgenic plants. Such a platform will facilitate molecular breeding and functional genomics of banana.  相似文献   

19.
BackgroundTreating latex rubber sheet wastewater often leads to the generation of a rotten-egg odor from toxic H2S. To increase the treatment efficiency and eliminate H2S, purple nonsulfur bacteria (PNSB), prepared by supplementing non-sterile rubber sheet wastewater (RAW) with fermented pineapple extract (FPE), were used to treat this wastewater under microaerobic light conditions. The following 3 independent variables: chemical oxygen demand (COD), initial pH and FPE dose were investigated using the Box–Behnken design to find optimal conditions for stimulating the growth of indigenous PNSB (PNSBsi).ResultsThe addition of 2.0% FPE into RAW, which had a COD of 2000 mg L- 1 and an initial pH of 7.0, significantly decreased oxidation reduction potential (ORP) value and stimulated PNSBsi to reach a maximum of 7.8 log cfu mL- 1 within 2 d. Consequently, these PNSBsi, used as inoculants, were investigated for their ability to treat the wastewater under microaerobic light conditions. A central composite design was used to determine the optimal conditions for the wastewater treatment. These proved to be 7% PNSBsi, 0.8% FPE and 4 d retention time and this combination resulted in a reduction of 91% for COD, 75% for suspended solids, 61% for total sulfide while H2S was not detected. Results of abiotic control and treatment sets indicated that H2S was produced by heterotrophic bacteria and it was then effectively deactivated by PNSBsi.ConclusionsThe stimulation of PNSB growth by FPE under light condition was to lower ORP, and PNSBsi proved to be effective for treating the wastewater.  相似文献   

20.
BackgroundBiohydrogen effluent contains a high concentration of volatile fatty acid (VFA) mainly as butyric, acetic, lactic and propionic acids. The presence of various VFAs (mixture VFAs) and their cooperative effects on two-stage biohythane production need to be further studied. The effect of VFA concentrations in biohydrogen effluent of palm oil mill effluent (POME) on methane yield in methane stage of biohythane production was investigated.ResultsThe methane yield obtained in low VFA loading (0.9 and 1.8 g/L) was 15–20% times greater than that of high VFA loading (3.6 and 4.7 g/L). Butyric acid at high concentrations (8 g/L) has the individual significantly negative effect the methane production process (P < 0.05). Lactic, acetic and butyric acid mixed with propionic acid at a concentration higher than 0.5 g/L has an interaction significantly negative effect on the methanogenesis process (P < 0.05). Inhibition condition had a negative effect on both bacteria and archaea with inhibited on Geobacillus sp., Thermoanaerobacterium thermosaccharolyticum, Methanoculleus thermophilus and Methanothermobacter delfuvii resulting in low methane yield.ConclusionPreventing the high concentration of butyric acid, and propionic acid in the hydrogenic effluent could enhance methane production in two-stage anaerobic digestion for biohythane production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号