首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
反函数是中学数学的一个难点,在高考中几乎年年出现,虽说其解题步骤简单:1.把函数看作方程,解出x;2.对调x、y;3.原函数的定义域、值域是反函数的值域、定义域.然而在实际解题过程中,经常出现以下误区.误区1:求反函数时忽略原函数的定义域.例1:求函数y=x2+4x+3(x≤-2)的反函数.错解:由已知x2+4x+(3-y)=0,得x=-2±"1+y.∴所得反函数为y=-2±"1+x(x≥-1).剖析:上述解法忽视了原函数的定义域(-∞、-2],故在求得反函数时,应舍去y=-2+"1+x.误区2:求反函数时,忽略原函数的值域.例2:求函数y="x2-2x+4(x≤0)的反函数.错解:因为y2=x2-2x+4,y2-3=(x-1)2…  相似文献   

2.
一、反函数策略例1求函数y=3-x2x+5的值域.分析此题可用“观察法”,但形如y=ax+bcx+d的值域问题,用反函数法尤为简洁.解函数y=3-x2x+5的反函数为y=3-5x2x+1,而y=3-5x2x+1的定义域为x|x≠-12 ,∴原函数的值域为y|y≠-12 .二、换元策略例2求函数y=2x+41-x姨的值域.分析可将原式2x移至等式左边后,再两边平方,用“Δ法”求解,但是值域范围有可能扩大.若令t=1-x姨≥0,则x=1-t2,从而将原式转化为在限制条件下,即t≥0时二次函数的值域问题.解令t=1-x姨≥0,则x=1-t2,故原式为y=2穴1-t2雪+4t=-2穴t-1)2+4≤4,∴原函数的值域为(-∞,4].三、数形结合…  相似文献   

3.
反函数是中学数学教材中的难点之一,在教学中我们常会遇到对反函数定义理解不深不透、解题思路不清、解答步骤不全等错误,严重影响学生对这部分知识的掌握.下面本人将以函数中常见的几种典型错误进行剖析,与同行磋商.误区一:忽视函数存在反函数的条件案例1函数y=x2(x∈R)是否存在反函数,若存在,求反函数;若不存在,说明理由.错解函数存在反函数.当x≥0时,由y=x2得x=y,所以x≥0时,反函数为y=x(x≥0);当x<0时,由y=x2得x=-y,所以x<0时,反函数为y=-x(x>0).剖析忽视函数存在反函数的条件,从而盲目地进行分类讨论求反函数.正解∵y=x2(x∈R)不是一一对应函数,∴y=x2不存在反函数.解后反思只有从定义域到值域上的一一映射所确定的函数才有反函数.误区二:错解反函数的解析式案例2求函数y=3x2-1(x≤0)的反函数的表达式.错解由y=3x2-1,得x2=(y+1)3,∴x=(y+1)3或x=-(y+1)3,∴反函数的表达式为y=(x+1)3或y=-(x+1)3.剖析在求解过程中没有考虑原函数中x≤0这个条件导致出现两个答案的错误.正解由y=3x2-1,得x2=(y+1)3,∵x≤0,∴x...  相似文献   

4.
方法一:反函数法根据反函数的性质,一个函数若存在反函数,那么反函数的定义域就是原函数的值域.这样,从原函数表达式y=f(x)中,解出自变量x来,得到一个以y为变量,x为函数的新函数x=f-1(y),这个函数自变量y的取值范围,就是原函数y=f(x)的值域.这个方法一般适用于分子、分母都是一次式的分式函数.例1.求函数y=1-x2x+5的值域.分析:因为y=1-x2x+5=-12+722x+5图象为以点(-52,-12)为中心,平行于x轴,y轴两条相交线为渐近线的双曲线.从自变量x到函数y是一一映射,存在反函数.解:由y=1-x2x+5得x=1-5y2y+1,这个函数中,自变量y的取值范围是y≠-12.所以,原…  相似文献   

5.
一、分段函数的反函数分段函数的反函数一定也是分段函数,具体求时,一般是把每一段当作单个函数来求,最后写成分段函数的形式.在这个过程中要注意函数的定义域、值域与其反函数的值域、定义域的对应关系.例1设函数f(x)=-log3(x 1),x∈(6, ∞),3x-6,x∈(-∞,6]的反函数为f-1(x),若f-119=a,则f(a 4)=.解当x>6时f(x)<0,x≤6时f(x)>0.又f-119=a,∴f(a)=91,∴3a-6=91,解得a=4,∴f(a 4)=f(8)=-log3(8 1)=-2.例2求函数f(x)=x2-1,x∈[0,1),239-x2,x∈[-3,0)的反函数.解由y=x2-1(0≤x<1),解得x=1 y(-1≤y<0).又由y=239-x2(-3≤x<0)得x=-9-49y2(0≤y<2…  相似文献   

6.
一、直接法例1求函数y=1/(2+x2)的值域. 解∵x2的最小值为0, ∴y的最大值为1/2. 又∵当x无限增大时,y接近0,但总是大于0, ∴函数的值域为{y|0相似文献   

7.
用判别式解题,由于诸种因素的相互制约,稍不留意.就出差错,今给出几例,剖析如下. 例1 求函数y=(x~2-x-1)/(x~2-x 1)的值域. 错解:将原式化为(y-1)x~2-(y-1)x y 1=0,∴ x∈R,故有N=[-(y-1)]~2-4(y-1)(y 1)≥0,解得-(5/3)≤y≤1.∴原函数的值域为-5/3≤y≤1. 剖析:上述解答的错误源于忽略了当y=1时,方程(y-1)x~2-(y-1)x y 1=0无解的情况. 正解:∵x~2-x 1=(x-1/2)~2 3/4≠0.∴原等式可化为(y-1)x~2-(y-1)x y 1=0.∵x∈R,故有△=[-(y-1)]~2-4(y-1)(y 1)≥0.解得-5/3≤y≤1.∵ 当y=1时.方程(y-1)x~2-(y-1)x y 1=0无解,∴y≠1.故原函数的值域是-5/3≤y<1.  相似文献   

8.
一、纯粹利用判别式求函数y=ax~2+bx+c/mx~2+nx+l值域的可靠性。 [例1]求函数y=5/2x~2+5x+3的值域。解:把原式变形成2yx~2+5yx+3y-5=0 ①∵ x为实数:△=(5y)~2-4(2y)(3y-5)≥0 解得 y≥0或y≤-40 即所求值域为:{y∶y≥0}∪{y∶y≤-40}。但由原函数显然可知y≠0,所以上面求得的值域并不可靠。 [例2]求函数y=x~2-x-2/2x~2-6x+4的值域。解:把原式变形成 (2y-1)x~2+(1-6y)x+4y+2=0 ②∵ x为实数,∴△=(1-6y)~2-4(2y-1)(4y+2)=(2y-3)~2≥0 ∵所求值域为y∈R事实上,y=(x~2-x-2)/(2x~2-6x+4)=((x-2)(x+1))/(2(x-2)(x-1))  相似文献   

9.
一本杂志上刊登过如下一道题目: 题一:设,f(x)=(x~2-4)~(1/2)(x≤-2).(1)求f~(-1)(x);(2)设a_1=1,a_n=f~(-1)(a_(n-1))(n≥2,n∈N),求a_n;(3)求sum from i=1 to n 1/(a_1+a_i+1)的值该题作为函数与数列的综合题在教学中广为流传,通常简解如下解:(1)函数,f(x)=(x~2-4)~(1/2)(定义域为x≤—2,值域为y≥0)的反函数为f~(-1)(x)=-(x~2+4)~(1/2)(定义域为x≥0,值域为y≤-2) (2)∵a_1=1,a_n=f~(-1)(a_(n-1))由迭代法得:a_n=-(a_(n-1)~2+4)~(1/2)=-(a_(n-2)~2+2×4)~(1/2)=…=-(a_1~2+(n-1)4)~(1/2)=-(4n-3)~(1/2)(亦可由a_n~2=a_(n-1)~2+4,n=2,3,…n,累加而得) (3) 注意到 a_n~2-a_(n-1)~2=4,  相似文献   

10.
函数     
第一课时映射与函数诊断检测一、选择题1.若函数y=f(x)的图象经过点(0,1),则f(x+4)的反函数的图象必经过( ) (A)(1,0). (B)(1,-4). (C)(1,4). (D)(4,1). 2.函数y=-x2-2ax(0≤x≤1)的最大值为a2,那么实数a的取值范围是( )  相似文献   

11.
<正>一、问题问题1:若函数y=f((1/2)9-x2)的定义域是[-3,3],则函数y=f(x)的定义域为.解:因为-3≤x≤3,所以0≤(1/2)9-x2≤3,故y=f(x)的定义域是[0,3].问题2:已知函数y=f(x2-1)的定义域是[-2,2],则函数y=f(x)的定义域为.解:因为-2≤x≤2,所以-1≤x2-1≤3,故y=f(x)的定义域是[-1,3].问题3:函数y=f(2x)的定义域是[-1,1],求y=f(log2x)的定义域.  相似文献   

12.
函数是中学教学中的重点内容之一 .由于函数的值域在教材中阐述其求法甚微 ,因而有不少的同学在求函数的值域时 ,无从着手 .为了帮助同学们在求值域时有一套较系统的方法 ,在这里归纳几种常用方法 ,供读者参考 .1 反函数法如函数 y =f (x)有反函数 ,则 y =f -1 (x)的定义域也就是 y =f (x)的值域 .例 1 求 y =f (x) =2 x2 x + 1的值域 .解 :原函数的反函数为y =f -1 (x) =log2x1-x.其定义域由 x1-x>0来确定 ,所以 0 相似文献   

13.
一、观察法通过对函数解析式的简单变形,利用熟知的基本函数的值域,或利用函数图像的“最高点”和“最低点”,观察求得函数的值域.例1求函数y=2+1x2的值域.解由上式可知,定义域为R.当x缀R时,2+x2≥2,所以0<12+x2≤12.故函数的值域为{y|0相似文献   

14.
判别式法是求函数值域的主要方法之一,方程思想在函数问题上的应用。它的理论依是:函数的定义域是非空数集,将原函数看作以y为参数的关于x的二次方程,若方程有数解,必须判别式Δ≥0,从而求得函数的值。因此,判别式法求函数值域的适用范围虽然泛,但又是有条件制约的。一、判别式法的广泛性⑴判别式法不只适用于形如y=x2+b1x+c1x2+b2x+c2(a12+a22≠0)的函数的值域问题。例1:求函数y=x-2-x√的值域。解:由已知得x-y=2-x√∵2-x≥0∴x≤2,又∵x-y≥0∴y≤2y=x-2-x√两边平方,整理得:x2-(2y-x+y2-2=0则解得y≤94又∵y≤2,故原函数的值域为狖y∈R…  相似文献   

15.
从题干的立意中找解题切入点的方法是由题干本身暗示的.以2004年高考选择题为例加以说明.一、排除法【例1】 (全国卷Ⅰ(4))函数y = x -1 1(x≥1)的反函数是(  )(A)y = x2 -2x 2 (x <1)(B)y = x2 -2x 2 (x≥1)(C)y = x2 -2x (x <1)(D)y = x2 -2x (x≥1)分析解答:由原函数与其反函数定义域与值域互换的性质, 原函数的值域为[1, ∞),那么反函数的定义域为[1, ∞),所排除A,C,又f(1) =1,据f(a) = b f-1(b)= a,而f-1(1)≠1,排除D.故选B.评点:利用原函数与其反函数性质进行排除.【例 2】 (重庆卷(12) 理) 三棱锥 A -BCD,在面ABC…  相似文献   

16.
<正>例题已知函数y=(1-x)~(1/2)+(x+3)~(1/2)的最大值为M,最小值为m,则M/m的值为多少?方法一(常规方法):该函数的定义域为{x|-3≤x≤1},显然y>0,两边平方变形得y~2=4+2(-(x+1)2+4)~(1/2)(常规做法,但这样做的前提是平方后-x和x相加能抵消  相似文献   

17.
文献[1]在对一道分式函数值域的错解进行纠错时,不慎又给出了一个错误答案.摘录如下:问题求函数 y=(1-x~2)~(1/2)/(2 x)的值域.错解原式变形为(x 2)y=(1-x~2)~(1/2),两边平方整理得(y~2 1)x~2 4y~2x 4y~2-1=0,因为 y~2 1>0且 x 是实数,所以△=16y~4-4(y~2 1)(4y~2-1)≥0,从而|y|≤1/3~(1/2),即原函数的值域是[-(3~(1/2)),3~(1/2)].剖析原函数在化为整式及去根号时,扩大了定义域,从而扩大了函数的值域.解因为函数的定义域为-1≤x≤1,所以 x 2>0,可得0≤((1-x~2)~(1/2))/(x 2)≤1/2.当 x=±1时,左端等号成立;当 x=0时,右端等号成立,所以函数的值域为[0,1/2].在高中数学教学中,常遇到一些分式函数的值域求解问题.学生的解题错误率较高,有的甚至感觉  相似文献   

18.
高中课本及其配套教学参考书在小结求反函数的步骤时这样指出:①先将y=f(x)看成方程,解出x=f~(-1)(y);②互换x=f~(-1)(y)中的x,y,即得反函数y=f~(-1)(x)。课本中的例题解答也全都按这两步进行。其实,所求得的“反函数”不一定是原函数的反函数,因为所求得的“反函数”的定义域未必是原函数的值域。因此,在求反函数时,必须先确定原函数的值域,即确定反函数的定义域,然后再按上述步骤求出反函数。所以求反函数应包含如下三个步骤:(1)求出函数y=  相似文献   

19.
一、问题的提出与探究已知函数f(x)=(-3x 7)~(1/2)(0≤x≤7/3), 求y=f(x)与它的反函数y=f-1(x)的交点.一般常有这样的思路: 解:y=f(x)与y=f-1(x)相交于y=x上, 所以建立方程 x=(-3x 7)~(1/2)(0≤x≤7/3), (舍去),  相似文献   

20.
一、观察法通过对函数定义域的观察,结合函数的解析式,求出函数的值域.例1求函数y=3 !2-3x的值域.解析由算术平方根的性质可知,!2-3x≥0,故3 !2-3x≥3.∴原函数的值域为{y|y≥3}.小结算术平方根具有双重非负性:(1)被开方数的非负性;(2)值的非负性.二、反函数法当原函数的反函数存在时,它的反函数的定义域就是原函数的值域.例2求函数y=xx 21的值域.解析由于函数y=xx 12的反函数为y=1x--21x,故原函数的值域为{y|y≠1}.小结利用反函数法求函数的值域的前提条件是原函数必须存在反函数.这种方法体现了逆向思维的思想,是解数学题的重要方…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号