首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The current paper addresses the fuzzy adaptive tracking control via output feedback for single-input single-output (SISO) nonlinear systems in strict-feedback form. Under the situation of system states being unavailable, the system output is used to set up the state observer to estimate the real system states. Furthermore, the estimation states are employed to design controller. During the control design process, fuzzy logic systems (FLSs) are used to model the unknown nonlinearities. A novel observer-based finite-time tracking control scheme is proposed via fuzzy adaptive backstepping and barrier Lyapunov function approach. The suggested fuzzy adaptive output feedback controller can force the output tracking error to meet the pre-specified accuracy in a fixed time. Meanwhile, all the closed-loop variables are bounded. Compared to some existing finite-time output feedback control schemes, the developed control strategy guarantees that the settling time and the error accuracy are independent of the uncertainties and can be specified by the designer. At last, the effectiveness and feasibility of the proposed control scheme are demonstrated by two simulation examples.  相似文献   

2.
This paper studies the voltage regulation problem of Buck converter under current constraint. Firstly, to speed up the voltage regulation, a nonlinear algorithm is proposed to make the output voltage track the reference voltage quickly in a finite time. Meanwhile, to protect the devices in the circuit, the current-constraint problem is also considered in the finite-time controller design. In addition, the situation of load change is also considered. The proof of finite-time stability of the total closed-loop system is given and its validity is fully tested. Finally, simulation and experiment verify that the system has excellent dynamic performance and steady-state performance.  相似文献   

3.
This paper investigates the finite-time cooperative circumnavigation control of multiple second-order agents, in which the agents should surround a moving target with desired formation and circular velocity based on local information. Firstly, the controller design is transformed into design control parameters such that the error system, including distance error, speed error and angle error, is finite-time consensus. The error system is viewed as a cascaded system containing two second-order subsystems, and then a distributed finite-time controller composed of two parts is delivered. The finite-time stability of the entire system is given by employing cascaded control theory. One significant advantage of the proposed controller is that it allows the agents to converge to desired trajectory in a finite time instead of asymptotically. Another merit is that the desired formation is an extensive case and unlimited, including different tracking radii and angular spacing. Furthermore, the proposed controller can be implemented by each agent in its local frame, utilizing only local information. These properties significantly extend the application scope of cooperative circumnavigation. Finally, simulations are carried out to validate the effectiveness of the proposed method.  相似文献   

4.
This paper precedes chaos control of fractional-order chaotic systems in presence of uncertainty and external disturbances. Based on some basic properties on fractional calculus and the stability theorems, we present a hybrid adaptive intelligent backstepping-sliding mode controller (FAIBSMC) for the finite-time control of such systems. The FAIBSMC is proposed based on the concept of active control technique. The asymptotic stability of the controller is shown based on Lyapunov theorem and the finite time reaching to the sliding surfaces is also proved. Illustrative and comparative examples and simulation results are given to confirm the effectiveness of the proposed procedure, which consent well with the analytical results.  相似文献   

5.
A new control design approach is proposed for a class of nonlinear systems expressed by Takagi–Sugeno (T-S) fuzzy model, considering several objectives including robustness against input time-varying delay, input constraint satisfaction, and reference tracking. The proposed controller is designed on the basis of an augmented model, Lyapunov–Krasovskii functional, linear matrix inequality (LMI) tools, and parallel distributed compensation (PDC) approach. Proof of the input-to-state stability (ISS) criterion is provided for the error dynamics. Input constraint satisfaction is performed using a reference-management algorithm based on the linearized closed-loop system from the reference input to the constrained variables. In order to illustrate the effectiveness of the proposed control approach, simulations are performed on three practical examples, including a flexible-joint robot and a continuous stirred tank reactor (CSTR).  相似文献   

6.
This paper is concerned with finite-time stabilization of a class of pure-feedback systems with dead-zone input. A systematic design procedure is established to derive the finite-time controller. Firstly, to circumvent the difficulties arising from the nonaffine properties, through a change of coordinates and incorporating mean value theorem, a system transformation technique is introduced to convert the original nonaffine system into an affine one. Then, based on the strengthened finite-time Lyapunov stability theorem as well as utilizing the bounds of dead-zone parameters, the finite-time stabilizer is explicitly constructed via backstepping design approach. It is proven that the designed controller can ensure all the states of the closed-loop system converge to zero in a finite time and maintain at zero afterwards. The proposed design framework is also extended to finite-time stabilization of uncertain pure-feedback systems and finite-time tracking control of pure-feedback systems. The effectiveness of the theoretical results are finally demonstrated by a numerical example and a realistic example.  相似文献   

7.
This work considers a distributed adaptive output feedback control problem for nonlinear constrained multi-agent systems (MAS) in the prescribed finite time. To begin with, a state observer is constructed to estimate the unmeasurable state. Then, we develop a novel observer based distributed adaptive prescribed finite time output feedback control algorithm by incorporating the prescribed finite-time control technique into the backstepping design method. Through Lyapunov stability theory, it can be shown that all signals of MASs are bounded, the tracking errors converge to the adjustable regions around the origin within the pre-given error accuracy and settling time, and all states keep in the prescribed constraint regions. Finally, a simulation example verifies the efficacy of the obtained theoretical results.  相似文献   

8.
This paper is devoted to the adaptive finite-time control for a class of stochastic nonlinear systems driven by the noise of covariance. The traditional growth conditions assumed on the drift and diffusion terms are removed through a technical lemma, and the negative effect generated by unknown covariance noise is compensated by combining adaptive control technique with backstepping recursive design. Then, without imposing any growth assumptions, a smooth adaptive state-feedback controller is skillfully designed and analyzed with the help of the adding a power integrator method and stochastic backstepping technique. Distinctive from the global stability in probability or asymptotic stability in probability obtained in related work, the proposed design algorithm can guarantee the solution of the closed-loop system to be finite-time stable in probability. Finally, a stochastic simple pendulum system is skillfully constructed to demonstrate the effectiveness of the proposed control scheme.  相似文献   

9.
This paper investigates a finite-time consensus issue for non-affine pure-feedback multi-agent systems with dead-zone input. Compared with the existing results on multi-agent systems, finite-time consensus problem of non-affine multi-agent systems is proposed for the first time. Based on the backsteppting technique, adaptive finite-time consensus control scheme is presented. With the help of this strategy, adaptive virtual variables, adaptive laws and the actual controller are designed to guarantee that the consensus errors converge to a small scale of the origin in finite time. Finally, a practical example is applied to verify the feasibility of the proposed method.  相似文献   

10.
In this paper, an asynchronous sliding mode control design method based on the event-triggered strategy is proposed for the continuous stirred tank reactor (CSTR) under external disturbance. Firstly, with the purpose of appropriately modeling the multi-mode switching phenomenon in the CSTR caused by the fluctuation of temperature and concentration, the Markov process is applied. Secondly, the asynchronous switching characteristics are introduced to describe mismatch between the controller and the system, which caused by some factors such as signal transmission delay and packet dropout. In order to effectively estimate the system states that cannot be measured in real time, an observer based on the event-triggered strategy is proposed, which also can reduce the computational cost. In addition, a sliding mode controller is designed to ensure the dynamic stability and the sliding dynamics is reachable in a finite time. Finally, the effectiveness of the proposed method is verified by simulation experiments.  相似文献   

11.
This paper investigates finite-time formation control problems of heterogeneous multi-agent systems subject to mismatched and matched disturbances. The studied agents are modelled with both different orders and dimensions. To achieve the desired finite-time formation control goal, a novel signal generator based finite-time formation control scheme is proposed, which is composed of two parts. In the first part, a distributed finite-time signal generator is established to produce formation references for the agents in finite time. In the second part, based on finite-time observer technique and homogeneous systems theory, a kind of composite anti-disturbance controllers are constructed for the agents to track the formation references in finite time. In this way, the studied multi-agent system completes the desired finite-time formation control task. Compared with the existing results, the proposed control scheme solves the disturbed finite-time formation control problems with both different agents’ orders and dimensions, simplifies the formation controller design by using a modular design philosophy, and makes the agents have a plug and play feature. A simulation example is shown to validate the effectiveness of the proposed control scheme.  相似文献   

12.
《Journal of The Franklin Institute》2022,359(18):10355-10391
In this paper, an adaptive neural finite-time tracking control is studied for a category of stochastic nonlinearly parameterized systems with multiple unknown control directions, time-varying input delay, and time-varying state delay. To this end, a novel criterion of semi-globally finite-time stability in probability (SGFSP) is proposed, in the sense of Lyapunov, for stochastic nonlinear systems with multiple unknown control directions. Secondly, a novel auxiliary system with finite-time convergence is presented to cope with the time-varying input delay, the appropriate Lyapunov Krasovskii functionals are utilized to compensate for the time-varying state delay, Nussbaum functions are exploited to identify multiple unknown control directions, and the neural networks (NNs) are applied to approximate the unknown functions of nonlinear parameters. Thirdly, the fraction dynamic surface control (FDSC) technique is embedded in the process of designing the controller, which not only the “explosion of complexity” problems are successfully avoided in traditional backstepping methods but also the command filter convergence can be obtained within a finite time to lead greatly improved for the response speed of command filter. Meanwhile, the error compensation mechanism is established to eliminate the errors of the command filter. Then, based on the proposed novel criterion, all closed-loop signals of the considered systems are SGPFS under the designed controller, and the tracking error can drive to a small neighborhood of the origin in a finite time. In the end, three simulation examples are applied to demonstrate the validity of the control method.  相似文献   

13.
This paper addresses the problem of global finite-time adaptive control for a class of switched stochastic uncertain nonlinear systems under arbitrary switchings. By applying the delicate introduction of coordinate transformations and adding a power integrator technique, an adaptive controller is constructed to guarantee that the system state is regulated to the origin almost surely in a finite time while maintaining the boundedness of the resulting closed-loop systems in probability. Two examples are given to illustrate the effectiveness of the proposed control scheme.  相似文献   

14.
This article investigates the finite-time consensus problem for the attitude system of multiple spacecraft under directed graph, where the communication bandwidth constraint, inertia matrix uncertainties and external disturbances are considered. An event-triggered communication mechanism is developed to address the problem of communication bandwidth constraint. In this event-triggered mechanism, spacecraft sends their attitude information to their neighbors only when the given event is triggered. Furthermore, an adaptive law is designed to counteract the effect of inertia matrix uncertainties and external disturbances. Then, a finite-time attitude consensus tracking control scheme is proposed based on the event-triggered communication mechanism and adaptive law. The proposed control scheme can guarantee the finite-time stability and convergence of the multiple spacecraft systems and exclude the Zeno phenomenon. Finally, simulation results validate the effectiveness of the proposed control scheme.  相似文献   

15.
This study concentrates on the tracking control of teleoperation system subjected to robot uncertainties. The coupling of kinematic and dynamic uncertainties poses a challenge to construct the teleoperation controller. To overcome this difficulty, an observer-based approach is designed to ensure position tracking while compensating for the unfavorable effects arising from the uncertainties. First, two sliding-mode observers together with a novel power reaching law are constructed, upon which, the uncertainties will be estimated in finite time. Next, a controller is proposed to solve the finite-time convergence of the tracking errors. The settling time and the stability of the closed-loop system are derived by Lyapunov’s direct method. Simulation results are presented to testify the tracking performance of the suggested control.  相似文献   

16.
This paper investigates adaptive practical finite-time stabilization for a class of switched nonlinear systems in pure-feedback form. Under some appropriate assumptions, a controller and adaptive laws are designed by using adding a power integrator technique, and neural networks are employed to approximate unknown nonlinear functions. It is proved that all states of the closed-loop system converge to a small neighborhood of the origin in finite time. Finally, two simulations are provided to show the feasibility and validity of the proposed control scheme.  相似文献   

17.
This paper studies the optimal finite-time passive control problem for a class of uncertain nonlinear Markovian jumping systems (MJSs). The Takagi and Sugeno (T–S) fuzzy model is employed to represent the nonlinear system with Markovian jump parameters and norm-bounded uncertainties. By selecting an appropriate Lyapunov-Krasovskii functional, it gives a sufficient condition for the existence of finite-time passive controller such that the uncertain nonlinear MJSs is stochastically finite-time bounded for all admissible uncertainties and satisfies the given passive control index in a finite time-interval. The sufficient condition on the existence of optimal finite-time fuzzy passive controller is formulated in the form of linear matrix inequalities and the designed algorithm is described as an optimization one. A numerical example is given at last to illustrate the effectiveness of the proposed design approach.  相似文献   

18.
This paper studies the finite-time localization and multicircular circumnavigation problem of an unknown stationary target via a networked multi-agent system using bearing-only measurements. To enhance the convergence rate of estimation, a novel estimator is developed to enable the agent to localize the target in finite time. At the same time, with the estimated target position, a distributed controller is designed such that the agents circumnavigate the target along different orbits with any prescribed angular spacing in finite time. In terms of Lyapunov theory and cascade control strategy, finite-time stability of the overall system including the estimator and controller are analyzed rigorously. Besides, the proposed algorithms guarantee that the agents can keep a safe distance from the target in the whole movement process, and high angular velocity can be avoided even if the circumnavigation radius becomes small. Finally, to corroborate the theoretical results, two simulation examples are given.  相似文献   

19.
This paper uses the directed communication topology to investigate the finite-time error constraint containment control for multiple Ocean Bottom Flying Node (OBFN) systems with thruster faults. The OBFN is a benthic Autonomous Underwater Vehicle (AUV), which has been used to explore submarine resources. The model uncertainties, velocity error constraint, external disturbances, and thruster faults of OBFNs motivate the design of containment controller. Moreover, some followers could obtain the states of leader OBFNs. We designed the command filter and the input signal is a hyperbolic tangent function. The virtual velocity error command is generated to follow the velocity error. Then the novel velocity error constraint distributed control algorithm is developed. Furthermore, for the problem of input saturation, by designing a stable anti-saturation compensator, an improved containment algorithm is proposed. It is proved that both the proposed approaches can converge the containment errors towards zero through Lyapunov theory in finite time, which means the followers can reach the convex hull formed by leaders in finite time. Finally, simulation results demonstrate the effectiveness of the two strategies.  相似文献   

20.
This paper investigates the adaptive attitude tracking problem for the rigid satellite involving output constraint, input saturation, input time delay, and external disturbance by integrating barrier Lyapunov function (BLF) and prescribed performance control (PPC). In contrast to the existing approaches, the input delay is addressed by Pade approximation, and the actual control input concerning saturation is obtained by utilizing an auxiliary variable that simplifies the controller design with respect to mean value methods or Nussbaum function-based strategies. Due to the implementation of the BLF control, together with an interval notion-based PPC strategy, not only the system output but also the transformed error produced by PPC are constrained. An adaptive fuzzy controller is then constructed and the predesigned constraints for system output and the transformed error will not be violated. In addition, a smooth switch term is imported into the controller such that the finite time convergence for all error variables is guaranteed for a certain case while the singularity problem is avoided. Finally, simulations are provided to show the effectiveness and potential of the proposed new design techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号