首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The robust control problem of a class of uncertain systems subject to intermittent measurement as well as external disturbances is considered. The disturbances are supposed to be generated by an exogenous system, while the state information is assumed to be available only on some nonoverlapping time intervals. A composite design consisting of an intermittent state feedback controller augmented by a disturbance compensation term derived from a disturbance observer is formulated. Unlike the conventional disturbance observers, the proposed disturbance observer is modelled by a switched impulsive system, which makes use of the intermittent state data to estimate the disturbances. Stability analysis of the resulting closed-loop system is performed by applying a piecewise time-dependent Lyapunov function. Then a sufficient condition for the existence of the proposed composite controllers is derived in terms of linear matrix inequalities (LMIs). The controller and observer gains can be achieved by solving a set of LMIs. Further, a procedure to limit the norms of the controller and observer gains is given. Finally, an illustrative example is presented to demonstrate the validity of the results.  相似文献   

2.
A robust multi-tracking problem is solved for heterogeneous multi-agent systems with uncertain nonlinearities and disturbances. The nonlinear function satisfies a Lipschitz condition with a time-varying gain, the integral of which is bounded by a linear function. A distributed impulsive protocol is proposed, where the position data and velocity data of desired trajectories are needed only at sampling instants. Based on the system decomposition technique, the error dynamic system of achieving multi-tracking is decomposed into two impulsive dynamic systems with vanishing perturbation and nonvanishing perturbation, respectively. Constructing a nominal model, then the multi-tracking problem is converted into the stability of impulsive dynamic system with nonvanishing perturbation under some conditions. It is proved that the proposed impulsive protocol is robust enough to solve the multi-tracking problem. Numerical examples are presented to illustrate the effectiveness of our theoretical results.  相似文献   

3.
In this paper, the observer-based sliding mode control (SMC) problem is investigated for a class of uncertain nonlinear neutral delay systems. A new robust stability condition is proposed first for the sliding mode dynamics, then a sliding mode observer is designed, based on which an observer-based controller is synthesized by using the SMC theory combined with the reaching law technique. Then, a sufficient condition of the asymptotic stability is proposed in terms of linear matrix inequality (LMI) for the overall closed-loop system composed of the observer dynamics and the state estimation error dynamics. Furthermore, the reachability problem is also discussed. It is shown that the proposed SMC scheme guarantees the reachability of the sliding surfaces defined in both the state estimate space and the state estimation error space, respectively. Finally, a numerical example is given to illustrate the feasibility of the proposed design scheme.  相似文献   

4.
A sliding mode observer in the presence of sampled output information and its application to robust fault reconstruction is studied. The observer is designed by using the delayed continuous-time representation of the sampled-data system, for which sufficient conditions are given in the form of linear matrix inequalities (LMIs) to guarantee the ultimate boundedness of the error dynamics. Though an ideal sliding motion cannot be achieved in the observer when the outputs are sampled, ultimately bounded solutions can be obtained provided the sampling frequency is fast enough. The bound on the solution is proportional to the sampling interval and the magnitude of the switching gain. The proposed observer design is applied to the problem of fault reconstruction under sampled outputs and system uncertainties. It is shown that actuator or sensor faults can be reconstructed reliably from the output error dynamics. An example of observer design for an inverted pendulum system is used to demonstrate the merit of the proposed methodology compared to existing sliding mode observer design approaches.  相似文献   

5.
This paper investigates the adaptive output feedback control problem for a class of nonlinear systems with unknown time delays and output function. The system satisfies linear growth condition with an unknown growth rate. First of all, based on a dynamic gain scaling technique, we present a new dynamic high-gain observer without requiring precise information of the output function. Then, by employing the idea of universal control and the backstepping method, a universal adaptive output feedback control law is designed to globally regulate all the states of the system. A simulation example is presented to illustrate the effectiveness of the proposed design scheme.  相似文献   

6.
This paper aims at providing new design approaches for positive observers of discrete-time positive linear systems based on a construction method of linear copositive Lyapunov function for positive systems. First, an efficient positive observer design approach is proposed by using linear programming such that the observer error system is exponentially stable. Furthermore, an interval observer design is proposed for uncertain positive systems. Then, the results are extended to positive time delay systems. In contrast with the previous design approaches, the new design method provides a general observer design with lower computational burden. Finally, three comparison examples are given to show the merit of the new design approach.  相似文献   

7.
This paper deals with the observer design problem for semi-Markov jump systems with incremental quadratic constraints. Based on the design objective that the state estimation error is stochastically stable, the sufficient conditions formulated by linear matrix inequalities are presented. To reduce the conservatism of sufficient conditions as well as the computational burden, the relaxation method with slack variable is employed. Finally, a simulation example verifies the effectiveness and superiority of the method studied in this paper.  相似文献   

8.
This paper is concerned with the problem of exponentially extended dissipative criteria for a class of delayed discrete-time neural networks (DNNs) subject to resilient observer-based controller design. For this objective, a memoryless full-order Luenberger state observer is designed, and further, its observer error system is calculated with resilient control. Initially, some new improved weighted summation inequalities are proposed by combining weighted summation inequality and an extended reciprocal convex matrix inequality. By constructing the suitable Lyapunov-Krasovskii functional (LKF) and utilizing the developed summation inequalities, the exponentially extended dissipative criterion is obtained for the considered delayed DNNs. The designed observer and resilient control gain matrices can be determined by solving a set of linear matrix inequalities (LMIs) subject to the prescribed exponential decay rate. Finally, two numerical examples are carried out to illustrate the feasibility and effectiveness of the established theoretical results obtained through the newly developed summation inequalities.  相似文献   

9.
The paper describes a novel method of sampled-data in space (spatial variable) nonlinear control of scalar semilinear parabolic and hyperbolic systems with unknown parameters, distributed disturbances and finite number of measurements along the spatial variable. Differently from recent results based on piecewise constant control laws, the proposed one is used piecewise nonlinear functions choosing by designer for providing some properties in the closed-loop system. In particular, we propose several types of functions providing reduced control. The gain design in the control law is found as a solution of linear matrix inequalities with minimum ultimate bound guarantee. The simulations confirm theoretical results and show the efficiency of the proposed control scheme compared with some existing ones.  相似文献   

10.
This study focuses on a sampled-data fuzzy decentralized tracking control problem for a quadrotor unmanned aerial vehicle (UAV) under the variable sampling rate condition. To this end, the overall dynamics of the quadrotor is expressed as a decentralized Takagi–Sugeno (T–S) fuzzy model interconnected with each other. Although the proposed decentralized control technique divides the overall UAV control system into attitude and position subsystems, the stability of the entire control system is guaranteed. Besides, in this paper, the model uncertainty, interconnection, and reference trajectory are considered as disturbances acting on the tracking error. To attenuate these disturbances, a novel sampled-data tracking control design technique is derived based on a linear reference model to be tracked and the time-dependent Lyapunov–Krasovskii functional (LKF). By doing so, both the stability of the tracking error dynamics and the minimization of tracking performance are guaranteed. Also, the proposed tracking control design method is derived as a linear matrix inequality (LMI)-based optimal problem. Finally, a simulation example is provided to demonstrate the effectiveness and feasibility of the proposed design methodology.  相似文献   

11.
This paper deals with the problem of boundary control for a class of semi-linear parabolic partial differential equations (PDEs) with non-collocated distributed event-triggered observation. A semi-linear Luenberger PDE observer with an output error based event-triggering condition is constructed by using the event-triggered observation to exponentially track the PDE state. By the estimated state, a feedback controller is proposed. It has been shown by the Lyapunov technique, and a variant of Poincaré–Wirtinger inequality that the resulting closed-loop coupled PDEs is exponentially stable if a sufficient condition presented in terms of standard linear matrix inequality (LMI) is satisfied. Moreover, a rigorous proof is provided for existence of a minimal dwell-time between two triggering times. Finally, numerical simulation results are given to show the effectiveness of the proposed design method.  相似文献   

12.
This paper presents an adaptive event-triggered filter of positive Markovian jump systems based on disturbance observer. A new adaptive event-triggering mechanism is constructed for the systems. A positive disturbance observer is designed for the systems to estimate the disturbance. A distributed output model of each subsystem of positive Markovian jump systems is introduced. Then, an adaptive event-triggering distributed filter is designed by employing stochastic copositive Lyapunov functions. All presented conditions are solvable in terms of linear programming. Under the designed disturbance observer and the distributed filter, the corresponding error system is stochastically stable. The filter design approach is also developed for discrete-time positive Markovian jump systems. The contribution of the paper lies in that: (i) A new adaptive event-triggering mechanism is established for positive systems, (ii) A positive disturbance observer is designed for the disturbance of positive Markovian jump systems, and (iii) The designed distributed filter can guarantee the stochastic stability of the error while existing filters in literature only achieve the stochastic gain stability of the error. Finally, two examples are given to illustrate the effectiveness of the proposed design.  相似文献   

13.
This paper investigates an adaptive output-feedback formation tracking problem for ensuring connectivity preservation and collision avoidance among networked uncertain underactuated surface vessels (USVs) with different communication ranges. An adaptive observer using neural networks is designed to estimate the velocity information of USVs where neural networks estimate unknown nonlinearities of USVs. Especially, contrary to the existing related work of USVs, a new state transformation technique for the adaptive observer design is presented to relax the condition requiring the boundedness of the yaw velocity of USVs. Then, the recursive tracker design strategy is established by using a unified error function for connectivity-preserving and collision-avoiding formation tracking, without employing any potential functions. The proposed formation tracker does not require additional neural networks to estimate unknown nonlinearities derived from the tracker design procedure. The proposed theoretical result is proved in the sense of Lyapunov.  相似文献   

14.
This paper develops a novel observer design method for multi-motor web-winding system. Firstly, the multi-motor web-winding system is regarded as a synthetic system with several subsystems, where the dynamic model for each subsystem is given. Then, the nonlinear diffeomorphism transformation is introduced to obtain a transformed system with block triangular structure and the interconnections among the subsystems are allowed. Next, a decentralized high-gain observer with sliding mode is designed for the transformed system, based on which the estimation error dynamics can be got. Sufficient condition of asymptotic stability for estimation error dynamics is derived by the Lyapunov stability theory and the observer gain is obtained. After that, the observer for original multi-motor web-winding system is achieved via inverse transformation. Finally, the simulation and analysis are performed in the three-motor web-winding system to verify the effectiveness of the proposed observer.  相似文献   

15.
This paper mainly investigates the fault detection problem for nonlinear multi-agent systems with actuator faults. For fault detection, a fixed-time observer is proposed by employing auxiliary variable received from neighbor agents. Then, with the aid of the observer, a residual vector is introduced by the auxiliary variable to detect the faults occurring on any followers, and each observer can estimate the whole state of followers. Moreover, the convergence time is dependent on the parameters of the designed observer and independent of initial condition of system state. Finally, the theoretical result is verified by a simulation example.  相似文献   

16.
A full order fractional-order observer is designed for a class of Lipschitz continuous-time nonlinear fractional-order systems with unknown input. Sufficient conditions of existence for the designed observer and stability of state estimation error system are developed by reconstructing state and using general quadratic Lyapunov function. By applying fractional-order extension of Lyapunov direct method, the stability of the fractional-order state estimation error system is analyzed. Due to the conditions involving a nonlinear matrix inequality, a new sufficient condition with linear matrix inequality (LMI) is reformulated, which makes the full order fractional-order observer implemented easily by using Matlab LMI toolbox. Examples are taken to show the effectiveness of the proposed approach by numerical simulations.  相似文献   

17.
A linear matrix inequality based mixed H2-dissipative type state observer design approach is presented for smooth discrete time nonlinear systems with finite energy disturbances. This observer is designed to maintain H2 type estimation error performance together with either H or a passivity type disturbance reduction performance in case of randomly varying perturbations in its gain. A linear matrix inequality is used at each time instant to find the time-varying gain of the observer. Simulation studies are included to explore the performance in comparison to the extended Kalman filter and a previously proposed constant gain observer counterpart.  相似文献   

18.
This paper develops a high gain observer with multiple sliding modes for simultaneous state and fault estimations for MIMO nonlinear systems. The novelty lies in the observer design that employs the combination of high-gain observer and sliding mode observer. The proposed observer does not impose the small-Lipschitz-constant condition on the system nonlinearity. By imposing a structural assumption on the nonlinear fault distribution matrix, the observability of the faults/unknown inputs w.r.t. the outputs is safeguarded and sliding modes are utilized for their reconstruction. The reconstruction of the faults from the sliding mode only relies on the output estimation error and thus can be implemented online together with the state estimation. Finally, an application to flexible joint robotic arm is used to illustrate the proposed method.  相似文献   

19.
This paper is concerned with the interval state estimation problem for continuous-time positive linear systems under intermittent denial-of-service (DoS) attacks. To solve the problem, two types of estimate strategies are proposed. One is using the interval observer at all times, the other is using the interval observer in the absence of attacks but using, instead, the interval predictor otherwise. To facilitate the analysis, the interval state estimation problem is reformulated into the positivity and stability analysis of the associated error system. Then, stability conditions and disturbance attenuation characterization of the error systems for the two strategies are established via a mode-dependent Lyapunov approach. Roughly speaking, it is shown that the interval estimation accuracy of the former strategy is higher than the latter when the open loop system is stable. Finally, several numerical examples are provided to illustrate the ascendancy of the proposed estimation strategies.  相似文献   

20.
In this paper, we study the consensus tracking control problem of a class of strict-feedback multi-agent systems (MASs) with uncertain nonlinear dynamics, input saturation, output and partial state constraints (PSCs) which are assumed to be time-varying. An adaptive distributed control scheme is proposed for consensus achievement via output feedback and event-triggered strategy in directed networks containing a spanning tree. To handle saturated control inputs, a linear form of the control input is adopted by transforming the saturation function. The radial basis function neural network (RBFNN) is applied to approximate the uncertain nonlinear dynamics. Since the system outputs are the only available data, a high-gain adaptive observer based on RBFNN is constructed to estimate the unmeasurable states. To ensure that the constraints of system outputs and partial states are never violated, a barrier Lyapunov function (BLF) with time-varying boundary function is constructed. Event-triggered control (ETC) strategy is applied to save communication resources. By using backstepping design method, the proposed distributed controller can guarantee the boundedness of all system signals, consensus tracking with a bounded error and avoidance of Zeno behavior. Finally, the correctness of the theoretical results is verified by computer simulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号