首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper deals with the interval type-2 (IT2) fuzzy tracking control problem for nonlinear networked control systems with unreliable communication links. The plant is described by an IT2 fuzzy system, and the IT2 fuzzy sampled-data tracking controller is designed under the unreliable communication mechanism. By utilizing the Lyapunov theory, the stability demonstration is carried out under the mathematical expectation. The characteristics of membership functions are applied to enhance the stability of the IT2 fuzzy system. With the more sampling information used in the stability analysis, the less conservative sufficient condition is provided based on which a networked tracking controller is designed to ensure the anticipant tracking performance. Finally, the efficiency and the merits of this paper are shown by two simulation examples.  相似文献   

2.
This work concentrates on the control design of interval type-2 (IT2) T–S fuzzy systems under probabilistic saturation constraints. The actual control signals are allowed to exceed some preset thresholds with a certain frequency. Meanwhile, the sensors are governed by the multi-node round-robin scheduling protocol, which permits more than one sensors to transmit their information at every moment. The main objective is to synthesize a fuzzy controller such that the closed-loop system is locally stochastically stable under probabilistic saturated constraints and the multi-node round-robin scheduling protocol. To this end, the probabilistic saturation constraints are characterized by a Bernoulli-distributed stochastic process, and the received state at the controller side is formulated based on an updating rule and a compensation strategy. By constructing new membership functions, a token-dependent control law is subsequently designed. The stability analysis is facilitated by a modified sector condition dealing with the saturation nonlinearities. With suitable selection of initial states, sufficient conditions are derived to achieve the local stochastic stability of the closed-loop IT2 T–S fuzzy system. A larger domain of stochastic stability can be obtained via a searching algorithm. Finally, the proposed method is illustrated via a simulation example.  相似文献   

3.
This paper is concerned with the issue of finite-time boundedness of discrete-time uncertain interval type-2 fuzzy systems with time-varying delay and external disturbances via an observer-based reliable control strategy. According to the system output variable, a full-state observer that shares the same membership functions of the plant is constructed to estimate the unknown system states. In addition, a reliable controller subject to observer states and actuator faults is designed to formulate the closed-loop feedback control system, which does not share the same membership functions of the plant. Then, by constructing an appropriate Lyapunov–Krasovskii functional and using the finite-time stability theory, a new set of delay-dependent sufficient conditions guaranteeing the finite-time boundedness of the addressed system is established in the framework of linear matrix inequalities. Furthermore, the explicit expressions of gain matrices of the state observer and the reliable controller are given in terms of the established sufficient conditions. Finally, simulation results are presented to demonstrate the effectiveness of the obtained theoretical results.  相似文献   

4.
This paper investigates the problem of event-triggered finite-time control for networked switched control systems with extended dissipative performance. Different from previous event-triggered results of switched systems, we propose a novel event-triggered method that allows more than once system switching over an event-triggered interval. By using a new Lyapunov function method, we discussed the finite-time extended dissipative analysis of the closed-loop networked switched systems. The controller gains and event-triggered parameters are obtained by solving some LMIs. Finally, numerical examples are given to illustrate the effectiveness of the proposed method.  相似文献   

5.
This paper presents new parameterized sampled-data stabilization criteria using affine transformed membership functions for T-S fuzzy systems. To deal with the sampled control input having aperiodic sampling intervals, the proposed method adopts new looped functionals, and employs a modified free weighting matrix inequality. A relaxed condition for the controller design is derived by formulating the constraint conditions of the membership functions in the proposed controller with affinely matched weighting parameter vectors. Based on a newly devised lemma for handling affinely matched vectors, the stabilization and guaranteed cost performance criteria are given in terms of linear matrix inequalities (LMIs). The superiority of the presented method is demonstrated via significantly improved results in numerical examples.  相似文献   

6.
In this paper, the problem of synchronization on interval type-2 (IT2) stochastic fuzzy complex dynamical networks (CDNs) with time-varying delay via fuzzy pinning control is fully studied. Firstly, a more general complex network model is considered, which involves the time-varying delay, IT2 fuzzy and stochastic effects. More specifically, IT2 fuzzy model, as a meaningful fuzzy scheme, is investigated for the first time in CDNs. Then, with the aid of Lyapunov stability theory and stochastic analysis technique, some new sufficient criteria are established to ensure synchronization of the addressed systems. Moreover, on basis of the parallel-distributed compensation (PDC) scheme, two effective fuzzy pinning control protocols are proposed to achieve the synchronization. Finally, a numerical example is performed to illustrate the effectiveness and superiority of the derived theoretical results.  相似文献   

7.
This paper is concerned with the problems of finite-time boundedness and finite-time control for positive coupled differential-difference equations (CDDEs) with bounded time-varying delay. The finite-time stability of such systems is analyzed by constructing an estimate of the solutions over a finite time interval. And, sufficient conditions based on linear programming (LP) are provided for finite-time stability of positive CDDEs with bounded time-varying delay. Then, by coordinate transformation, the obtained results are extended to the finite-time bounedness of positive CDDEs with bounded time-varying delay. By the obtained result of finite-time boundedness, static output-feedback controllers and static state-feedback controllers are designed and a sufficient condition is derived to ensure the positivity and finite-time boundedness of closed-loop system. Three illustrative examples are given to show the validity of our results.  相似文献   

8.
This paper is concerned with the network-based H fuzzy filtering for non-linear systems with parameter uncertainties under a novel adaptive discrete event-triggered communication scheme (DETCS). Based on interval type-2 (IT2) Takagi–Sugeno (T–S) fuzzy model, the non-linear systems with parameter uncertainties are represented as a class of IT2 T–S fuzzy systems. In the design process, a novel adaptive DETCS is proposed to reduce the usage of system resources and adapt the variation of plant output, and a novel networked IT2 T–S fuzzy filter is applied to improve the flexibility of filter design. By employing the time-delay systems modeling method, the filtering-error-system is modeled as a class of interval time-varying delayed IT2 T–S fuzzy systems with asynchronously and imperfectly matched membership functions, and further conditionally expressed as a favorable form. Then, some relaxed stability criteria are established to determine that this class of delayed IT2 T–S fuzzy systems is asymptotically stable with a prescribed H disturbance attenuation performance. Also, the co-design of parameter matrices of adaptive DETCS and filter is implemented. Finally, two numerical examples are provided to demonstrate the effectiveness of the proposed method.  相似文献   

9.
In this paper, the issues of finite-time extended dissipative analysis and non-fragile control are investigated for a class of uncertain discrete time switched linear systems. Based on average dwell-time approach, sufficient conditions for the finite-time boundedness and finite-time extended dissipative performance of the considered systems are proposed by solving some linear matrix inequalities, where using the concept of extended dissipative, we can solve the H, L2?L, Passivity and (Q, S, R)-dissipativity performance in a unified framework. Furthermore, two form of non-fragile state feedback controllers are designed to guarantee that the closed-loop systems satisfy the finite-time extended dissipative performance. Finally, simulation example is given to show the efficiency of the proposed methods.  相似文献   

10.
This article investigates the defense control problem for sampled-data Takagi-Sugeno (T-S) fuzzy systems with multiple transmission channels against asynchronous denial-of-service (DoS) attacks. Firstly, a new switching security control method is proposed to tolerate the asynchronous DoS attacks that act independently on each channel. Then, based on switching strategy, the resulting augmented sampled-data system can be converted into new switched systems including several stable subsystems and one open-loop subsystem. Besides, by applying the piecewise Lyapunov-Krasovskii (L-K) function method, membership functions (MFs) dependent sufficient conditions are derived to ensure the exponential stability of newly constructed switching systems. Moreover, quantitative relations among the sampling period, the exponential decay rate, and the rate of all channels being fully attacked and not being completely attacked are established. Finally, simulation examples show the effectiveness of the developed defense control approach.  相似文献   

11.
This paper investigates the problem of event-triggered filter design for nonlinear networked control systems (NCSs) in the framework of interval type-2 (IT2) fuzzy systems. A novel IT2 fuzzy filter for ensuring asymptotic stability and H performance of filtering error system is proposed, where the premise variables are different from those of the fuzzy model. Attention is focused on solving the problem of event-triggered filter design subject to parameter uncertainties, data quantization, and communication delay in a unified frame. It is shown that the proposed event-triggered filter design communication mechanism for IT2 fuzzy NCSs has the advantage of the existing event-triggered approaches to reduce the utilization of limited network resources and provides flexibility in balancing the tracking error and the utilization of network resources. Finally, simulation example is given to validate the advantages of the presented results.  相似文献   

12.
This paper studies networked H filtering for Takagi–Sugeno fuzzy systems with multi-output multi-sensor asynchronous sampling. Different output variables in a dynamic system are sampled by multiple sensors with different sampling rates. To estimate the signals of such a system, a continuous multi-rate sampled-data fusion method is proposed to design a novel networked filter. By considering a class of decentralized event-triggered transmission schemes, multi-channel network-induced delays, and the updating modes of the MOMR sampled-data, a networked jumping fuzzy filter is proposed to estimate system signals based on the transmitted multi-rate sampled-data of fuzzy system and the multi-rate sampled states of filter, and the jumping among filter modes is governed by a Markov process which depends on the arrival times of sampled output sub-vectors. To deal with asynchronous membership functions, the networked fuzzy filtering system is modeled as an uncertain fuzzy stochastic system with membership function deviation bounds. Based on stability and H performance analysis, several membership-function-dependent conditions are presented to co-design the event-triggered transmission schemes and the fuzzy filter such that the filtering error system is robustly mean-square exponentially stable with a prescribed H attenuation level. Finally, the improvement in estimation performance and comparison with the existing filtering methods are discussed through simulation examples.  相似文献   

13.
This paper studies the extended dissipativity (ED) issue for T-S fuzzy systems (TSFSs) via reliable memory control scheme and aperiodic sampled-data (ASD) method. First, considering the random variation of sampling interval and the time delays (TDs) of sampling signal transmission in the communication network, a reliable aperiodic memory sampled-data control (RAMSDC) strategy is proposed. Then, the developed delay-dependent Lyapunov-Krasovskii functional (LKF) with some two-sided looped-functional (TSLF) terms is constructed to fully utilize sampled state information. The introduced free matrices in the TSLF need not to be positive definite, which reduces the conservativeness of the obtained results. Next, a sufficient condition is given to ensure the ED, and the controller gain matrix is obtained by means of linear matrix inequality (LMI) technique. At last, the effectiveness of theoretical results in practical application is verified by the use of a truck-trailer model.  相似文献   

14.
In this paper, the exponential stabilization problem of uncertain T–S fuzzy systems with time-varying delay is emulated by fuzzy sampled-data H control. Firstly, a novel suitable Lyapunov–Krasovskii function is constructed, which contains all the information about the sampling pattern. Secondly, a less conservative result is achieved by using an extended Jensen inequality, and purposefully using a compact free weighting matrix. In addition, according to the linear matrix inequality (LMI), some sampled-data H exponential stability sufficient conditions and controller design of T–S fuzzy systems are established. Finally, effectiveness gives some illustrative examples may be used to display the value of the current proposed method as well as a significant improvement.  相似文献   

15.
This paper aims at the sampled-data control problem for a class of pure-feedback nonlinear systems. A fuzzy state observer is constructed to evaluate the unavailable states. In this process, fuzzy logic systems are applied to approximate the uncertain nonlinear functions. Based on the new designed state observer, a sampled-data control scheme for the pure-feedback nonlinear systems is proposed. The designed sampled-data controller ensures the boundedness of the nonlinear systems. Finally, two numerical examples are used to demonstrate that the proposed method is efficient.  相似文献   

16.
In this paper, the problem of observer-based model predictive control (MPC) for a multi-channel cyber-physical system (CPS) with uncertainties and hybrid attacks is investigated via interval type-2 Takagi-Sugeno (IT2 T-S) fuzzy model. Both denial-of-service (DoS) and false data injection (FDI) attacks are studied due to the vulnerability of wireless transmission channels. The objective of the addressed problem is to improve the security performance of the multi-channel CPS under malicious attacks, which has not been adequately investigated in the existing MPC algorithms. Moreover, uncertainties which appear not only in the membership functions but in both state and input matrices are considered. In this paper, different from the method that FDI attacks are handled by the bounded functions, an off-line observer is designed to actively defend against the FDI attacks. Meanwhile, an on-line MPC optimization algorithm, which minimizes the upper bound of objective function respecting input constraints, is presented to obtain the secure controller gains. Finally, an illustrative example is provided to verify the effectiveness and superiority of presented approach.  相似文献   

17.
This paper is concerned with the extended dissipative control for discrete-time interval type-2 semi-Markovian jump systems with mode-dependent bounded sojourn time. A time interval decomposition approach is proposed to analyze the extended dissipative performance. Based on the approach, an analysis result for the closed-loop system is obtained by utilizing a novel stochastic characteristic of Lyapunov-like stochastic process. Facilitated by the cone complementarity linearization algorithm, the extended dissipative controller can be developed in light of the obtained analysis result. Simulation examples including mass-spring-damper are provided to demonstrate the effectiveness of the proposed approach.  相似文献   

18.
This paper is concerned with the non-fragile dynamic output feedback control for uncertain T–S fuzzy systems with time-varying delay and randomly occurring gain variations (ROGVs). Considering the imperfect premise matching that the T–S fuzzy model and the fuzzy controller do not have the same membership function, the purpose is to enhance the robustness of the system and the flexibility of the controller design. By adjusting the free weight matrix in the concept of extended dissipative, H, L2L, passive and (Q, S, R)-dissipative performance are solved in a unified framework. Stochastic phenomenon ROGVs is considered to describe the impact of the controller gain variations in the system, which is designed into two sequences of random variables and obey the Bernoulli distribution. Based on Lyapunov–Krasovskii functional (LKF) and integral inequality technique, some less conservative sufficient conditions are obtained to guarantee the close-loop system is asymptotically stable and extended dissipative. By solving the linear matrix inequalities (LMIs), a non-fragile dynamic output feedback controller can be developed. The advantage and effectiveness of the proposed design method can be illustrated by several numerical examples.  相似文献   

19.
This paper studies the finite-time guaranteed cost control problem for switched nonlinear stochastic systems with parameter uncertainties and time-varying delays. By choosing a model-dependent and delay-dependent Lyapunov-Krasovskii functional, applying the average dwell time approach and the Gronwall inequality, some novel sufficient conditions are derived to ensure that the switched nonlinear stochastic closed-loop system is finite-time stochastically stable and an upper bound is given on the performance index. The obtained nonlinear matrix is transformed into a linear matrix form, and then the feedback controller gains of the switched nonlinear stochastic systems with time-varying delay are obtained. Finally, two simulation examples are designed to verify the effectiveness of the suggested approach.  相似文献   

20.
The problem of finite-time stability for linear discrete-time systems with time-varying delay is studied in this paper. In order to deal with the time delay, the original system is firstly transformed into two interconnected subsystems. By constructing a delay-dependent Lyapunov–Krasovskii functional and using a two-term approximation of the time-varying delay, sufficient conditions of finite-time stability are derived and expressed in terms of linear matrix inequalities (LMIs). The derived stability conditions can be applied into analyzing the finite-time stability and deriving the maximally tolerable delay. Compared with the existing results on finite-time stability, the derived stability conditions are less conservative. In addition, for the stabilization problem, we design the state-feedback controller. Finally, numerical examples are used to illustrate the effectiveness of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号