首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this paper, the robust motion control problem is investigated for quadrotors. The proposed controller includes two parts: an attitude controller and a position controller. Both the attitude and position controllers include a nominal controller and a robust compensator. The robust compensators are introduced to restrain the influence of uncertainties such as nonlinear dynamics, coupling, parametric uncertainties, and external disturbances in the rotational and translational dynamics. It is proven that the position tracking errors are ultimately bounded and the boundaries can be specified by choosing controller parameters. Experimental results on the quadrotor demonstrate the effectiveness of the robust control method.  相似文献   

2.
In this paper, a novel robust control strategy based on disturbance-compensation-gain (DCG) construction approach is proposed for small-scale unmanned helicopters in the presence of high-order mismatched disturbances. The overall control structure consists of two hierarchical layers. The inner-loop controller is to guarantee the stability of the unmanned helicopters subject to high-order mismatched disturbances. With the estimation of the disturbances and their successive derivatives via finite-time disturbance observer (FTDO), by properly designing some disturbance compensation gains, a novel robust controller is developed to remove the high-order mismatched disturbances from the output channels. The outer-loop controller is to produce flight commands for inner-loop system, as well as to track the reference trajectory, which is carried out with the dynamic inversion technique. The simulation results demonstrate that the unmanned helicopters are capable to perform flight missions autonomously with the proposed control strategy.  相似文献   

3.
This paper investigates a robust H controller design for discrete-time polynomial fuzzy systems based on the sum-of-squares (SOS) approach when model uncertainties and external disturbances are simultaneously considered. At the beginning of the controller design procedure, a general discrete-time polynomial fuzzy control system proposed in this paper is used to represent a nonlinear system containing model uncertainties and external disturbances. Subsequently, through use of a nonquadratic Lyapunov function and the H performance index, the novel SOS-based robust H stability conditions are derived to guarantee the stability of the entire control system. By solving those stability conditions, control gains of the robust H polynomial fuzzy controller are obtained. Because the model uncertainties and external disturbances are considered simultaneously in the controller design procedure, the closed-loop control system achieves greater robustness and H performance against model uncertainties and external disturbances. Moreover, the novel operating-domain-based robust H stability conditions are derived by considering the operating domain constraint to relax the conservativeness of solving the stability conditions. Finally, simulation results demonstrated the availability and effectiveness of the proposed stability conditions, which are more general than those used in existing approaches.  相似文献   

4.
In this paper, a robust visual servoing control approach is proposed to address the landing problem for quadrotors on a moving platform. A vision system is implemented to estimate the position and velocity of the quadrotor. A robust cascade controller is proposed by following backstepping-like fundamentals and robust compensating theory. The effects of time-varying uncertainties, including parameter uncertainties and external disturbances, and time-varying delays resulted from image acquisition, image processing, and sensor measurement delays can be restrained. Experimental results using a quadrotor to land on a ground moving target illustrate the effectiveness of the proposed approach.  相似文献   

5.
Robust formation problems for linear multi-agent systems with uncertainties and external disturbances are investigated in this paper. The model of each agent can be described by a nominal linear system combined with external disturbances and uncertainties which include parameter perturbations and nonlinear uncertainties. A more general bound of uncertainties is introduced. A robust formation controller, which consists of a nominal controller and a robust compensator, is proposed to achieve the desired state formation and restrain the influence of uncertainties and disturbances. Furthermore, sufficient conditions for time-varying formation feasibility are introduced and proved. Finally, a numerical example is provided to demonstrate the theoretical results.  相似文献   

6.
Over the last decade, considerable interest has been shown from industry, government and academia to the design of Vertical Take-Off and Landing (VTOL) autonomous aerial vehicles. This paper uses the recently developed sliding mode control driven by sliding mode disturbance observer (SMC-SMDO) approach to design a robust flight controller for a small quadrotor vehicle. This technique allows for a continuous control robust to external disturbance and model uncertainties to be computed without the use of high control gain or extensive computational power. The robustness of the control to unknown external disturbances also leads to a reduction of the design cost as less pre-flight analyses are required. The multiple-loop, multiple time-scale SMC-SMDO flight controller is designed to provide robust position and attitude control of the vehicle while relying only on knowledge of the limits of the disturbances. Extensive simulations of a 6 DOF computer model demonstrate the robustness of the control when faced with external disturbances (including wind, collision and actuator failure) as well as model uncertainties.  相似文献   

7.
In the present paper, the problem of designing a global sliding mode control scheme based on fractional operators for tracking a quadrotor trajectory is investigated. The model of the quadrotor system is given with disturbances and uncertainties. To converge in short finite time of the sliding manifold, a classical quadratic Lyapunov function was used and also a global stabilization of the quadrotor system is ensured. The proposed controller can be ensured the robustness against external disturbances and model uncertainties. Some scenarios are illustrated in this paper. Finally, a comparative study to three other controllers is provided to show the validity and feasibility of the proposed method.  相似文献   

8.
A discrete-time output feedback quasi-sliding mode control scheme is proposed to realize the problem of robust tracking and model following for a class of uncertain linear systems in which states are unavailable and estimated states are not required. The proposed scheme guarantees the stability of the closed-loop system and achieves a very small ultimate boundedness of the tracking error in the presence of matched uncertain parameters and external slow disturbances. This scheme ensures the robustness to matched parametric uncertainties and disturbances. Since the proposed controller is designed without any switching element, the chattering phenomenon is eliminated. Furthermore, the knowledge of upper bound of uncertainties is not required. Simulation results demonstrate the effectiveness of the proposed scheme.  相似文献   

9.
In this work, finite time position and heading control based on backstepping based fast terminal sliding mode control is proposed for coaxial octorotor subjected to external wind disturbances. First, mathematical model of the coaxial octorotor is developed and then a new learning-based technique, an extended inverse multi-quadratic radial basis function network (EIMRBFN) is proposed to estimate the unmodeled dynamics of the octorotor. The external disturbance observer is also designed to encompass the realistic disturbance effect in the dynamical model and to allow the controller handle external disturbances, effectively. Backstepping controller based on fast terminal sliding model control is then proposed and also applied on the resultant dynamical model that provides finite time convergence of system's states. The stability of the proposed controller and complete system is analyzed using Lyapunov stability theory. Finite time convergence analysis of the desired trajectory is also provided. Simulations are carried out to validate the effectiveness of the proposed control scheme. Comparison with traditional PID and LQR controllers also verifies that the proposed controller achieves improved performance.  相似文献   

10.
This paper investigates the finite-time cooperative formation control problem for a heterogeneous system consisting of an unmanned ground vehicle (UGV) - the leader and an unmanned aerial vehicle (UAV) - the follower. The UAV system under consideration is subject to modeling uncertainties, external disturbance as well as actuator faults simultaneously, which is associated with aerodynamic and gyroscopic effects, payload mass, and other external forces. First, a backstepping controller is developed to stabilize the leader system to track the desired trajectory. Second, a robust nonsingular fast terminal sliding mode surface is designed for UAV and finite-time position control is achieved using terminal sliding mode technique, which ensures the formation error converges to zero in finite time in the presence of actuator faults and other uncertainties. Furthermore, by combining the radial basis function neural networks (NNs) with adaptive virtual parameter technology, a novel NN-based adaptive nonsingular fast terminal sliding formation controller (NN-ANFTSMFC) is developed. By means of the proposed adaptive control strategy, both uncertainties and actuator faults can be compensated without the prior knowledges of the uncertainty bounds and fault information. By using the proposed control schemes, larger actuator faults can be tolerated while eliminating control chattering. In order to realize fast coordinated formation, the expected position trajectory of UAV is composed of the leader position information and the desired relative distance with UGV, based on local distributed theory, in the three-dimensional space. The tracking and formation controllers are proved to be stable by the Lyapunov theory and the simulation results demonstrate the effectiveness of proposed algorithms.  相似文献   

11.
This work aims to design a neural network-based fractional-order backstepping controller (NNFOBC) to control a multiple-input multiple-output (MIMO) quadrotor unmanned aerial vehicle (QUAV) system under uncertainties and disturbances and unknown dynamics. First, we investigated the dynamic of QUAV composed of six inter-connected nonlinear subsystems. Then, to increase the convergence speed and control precision of the classical backstepping controller (BC), we design a fractional-order BC (FOBC) that provides further degrees of freedom in the control parameters for every subsystem. Besides, designing control is a challenge as the FOBC requires knowledge of accurate mathematical model and the physical parameters of QUAV system. To address this problem, we propose an adaptive approximator that is a radial basis function neural network (RBFNN) included in FOBC to fix the unknown dynamics problem which results in the new approach NNFOBC. Furthermore, a robust control term is introduced to increase the tracking performance of a reference signal as parametric uncertainties and disturbances occur. We have used Lyapunov's theorem to derive adaptive laws of control parameters. Finally, the outcoming results confirm that the performance of the proposed NNFOBC controller outperforms both the classical BC , FOBC and a neural network-based classical BC controller (NNBC) and under parametric uncertainties and disturbances.  相似文献   

12.
This article is dedicated to the issue of asynchronous adaptive observer-based sliding mode control for a class of nonlinear stochastic switching systems with Markovian switching. The system under examination is subject to matched uncertainties, external disturbances, and quantized outputs and is described by a TS fuzzy stochastic switching model with a Markovian process. A quantized sliding mode observer is designed, as are two modes-dependent fuzzy switching surfaces for the error and estimated systems, based on a mode dependent logarithmic quantizer. The Lyapunov approach is employed to establish sufficient conditions for sliding mode dynamics to be robust mean square stable with extended dissipativity. Moreover, with the decoupling matrix procedure, a new linear matrix inequality-based criterion is investigated to synthesize the controller and observer gains. The adaptive control technique is used to synthesize asynchronous sliding mode controllers for error and SMO systems, respectively, so as to ensure that the pre-designed sliding surfaces can be reached, and the closed-loop system can perform robustly despite uncertainties and signal quantization error.Finally, simulation results on a one-link arm robot system are provided to show potential applications as well as validate the effectiveness of the proposed scheme.  相似文献   

13.
In this paper a sliding mode position control for high-performance real-time applications of induction motors is developed. The design also incorporates a sliding mode rotor flux estimator in order to avoid the flux sensors. The proposed control scheme presents a low computational cost and therefore can be implemented easily in a real-time applications using a low cost Digital Signal Processor (DSP). The stability analysis of the observer and the controller, under parameter uncertainties and load torque disturbances, is provided using the Lyapunov stability theory. Finally simulated and experimental results show that the proposed controller with the proposed observer provides a good trajectory tracking and that this scheme is robust with respect to plant parameter variations and external load disturbances.  相似文献   

14.
This paper presents a robust scheme for fixed-time tracking control of a multirotor system. The aircraft is subjected to matched lumped disturbances, i.e., unmodeled dynamics, parameters uncertainties, and external perturbations besides measurement noise. Firstly, a novel Nonlinear Homogeneous Continuous Terminal Sliding Manifold (NHCTSM) based on the weighted homogeneity theory is presented. The sliding manifold is designed with prescribed dynamics featuring Global Asymptotic Stability (GAS) and fixed-time convergence. Then, a novel Fixed-time Non-switching Homogeneous Nonsingular Terminal Sliding Mode Control (FNHNTSMC) is proposed for the position and attitude loops by employing the developed NHCTSM and an appropriate reaching law. Moreover, the control framework incorporates a disturbance observer to feedforward and compensate for the disturbances. The designed control scheme can drive the states of the system to the desired references in fixed-time irrespective of the values of the Initial Conditions (ICs). Since the existing works on homogeneous controllers rely on the bi-limit homogeneity concept in the convergence proofs, the estimate of the settling-time or its upper-bound cannot be given explicitly. In contrast, this study employs Lyapunov Quadratic Function (LQF) and Algebraic Lyapunov Equation (ALE) in the stability analysis of both controller and observer. Following this method, an expression of the upper-bound of the settling-time is explicitly derived. Furthermore, to assure the Uniform Ultimate Boundedness (UUB) of all signals in the feedback system, the dynamics of the observer and controller are jointly analyzed. Simulations and experiments are conducted to quantify the control performance. The proposed approach achieves superior performance compared with recent literature on fixed-time/finite-time control and a commercially available PID controller. The comparative results witness that the developed control scheme improves the convergence-time, accuracy, and robustness while overcoming the singularity issue and mitigating the chattering effect of conventional SMC.  相似文献   

15.
The hydraulic flight motion simulator (HFMS), as a key equipment for hardware-in-the-loop (HWIL) simulation in the field of aerospace, is required to have the ability to accurately simulate the aircraft attitude in the laboratory. However, three model uncertainties including nonlinear friction torque, unbalanced gravity torque and time-varying inertia existing in the outer frame of the HFMS at the same time become a main obstacle to achieving its high-precision position control effect. In this paper, according to identification results of friction torque and gravity torque from experiments, combining with simulation result of time-varying inertia of the outer frame from virtual prototype, a disturbance-observer-based nonlinear robust controller with the model compensation was designed on the basis of the mathematical model. Here, since the model compensation has eliminated the main mismatched uncertainties, dual disturbance observers are only necessary to suppress unmodeled mismatched uncertainties and matched uncertainties. Furthermore, the zero bias of the servo valve was also considered to help controller implementation. Finally, the effectiveness and the practicability of the proposed control method were validated by comparative experiments, which demonstrates that the proposed control method is promising and can be applied in the high-precision position control for the HFMS.  相似文献   

16.
Non-holonomic wheeled mobile robots (WMRs) are highly uncertain, multi-input multi-output (MIMO), non-linear dynamic systems that are expected to perform under varying environment and structural reservations. An Adaptive Fractional Order Parallel Fuzzy Proportional-Integral-Derivative (AFO?PFPID) controller is proposed and investigated on WMR to meet the above challenges. Computer simulations were carried out under the effects of dynamic parameter variations, noise, forced displacement, time delay, and uncertainty in the pose to thoroughly assess the controller's performance. Further, to evaluate its relative assessment, the AFO?PFPID controller's performance is compared with its integer counterpart Adaptive Integer Order Parallel Fuzzy Proportional-Integral-Derivative (AIO?PFPID) controller. Both the controllers were tuned with the Multi-Objective Grey Wolf Optimization Algorithm to minimize the positional and velocity profile errors with an overall goal to attain effective trajectory tracking. Though both the controllers effectively performed tracking goals, the AFO?PFPID controller has offered a significantly robust performance even under the model uncertainties and disturbances. Therefore, based on the presented investigations, it is concluded that the AFO?PFPID controller is a superior control technique for non-holonomic WMRs trajectory tracking application.  相似文献   

17.
The introduction of advanced control algorithms may improve considerably the efficiency of wind turbine systems. This work proposes a high order sliding mode (HOSM) control scheme based on the super twisting algorithm for regulating the wind turbine speed in order to obtain the maximum power from the wind. A robust aerodynamic torque observer, also based on the super twisting algorithm, is included in the control scheme in order to avoid the use of wind speed sensors. The presented robust control scheme ensures good performance under system uncertainties avoiding the chattering problem, which may appear in traditional sliding mode control schemes. The stability analysis of the proposed HOSM observer is provided by means of the Lyapunov stability theory. Experimental results show that the proposed control scheme, based on HOSM controller and observer, provides good performance and that this scheme is robust with respect to system uncertainties and external disturbances.  相似文献   

18.
A simple structure robust attitude synchronization with input saturation   总被引:1,自引:0,他引:1  
The attitude synchronization problem of multiple spacecraft is investigated in this paper. A simple cooperative control law, which can render spacecraft formation synchronized to a time-varying reference trajectory globally in the presence of model uncertainties, external disturbances and input saturation, is proposed. The globally asymptotic stability of the controller in the presence of model uncertainties and external disturbances is proven rigorously through a three-step proof technique. The controller can be used in orbit without modification due to its low computational complexity. Then, the proposed controller is extended to solve the consensus problem for multiple inertial agents with double-integrator dynamics. Finally, Numerical simulations are included to demonstrate the effectiveness of the developed controller.  相似文献   

19.
This paper presents a novel combined State Dependent Riccati Equation (SDRE) / Function Approximation Technique (FAT)-based control design for nonlinear uncertain systems. The SDRE is employed to construct an optimal controller and the function approximation technique is utilized to estimate time-varying disturbances and uncertainties. Moreover, a robust term in the proposed control law compensates for the truncation error. The closed-loop stability and boundedness of the tracking error and FAT weights approximation error are proved in the sense of Lyapunov, with consideration of truncation error. Due to the great importance of the adequate performance of transient response from practical point of view, performance evaluation has been accomplished. The proposed scheme is computationally simple due to utilizing the FAT to represent uncertainties and disturbances as a function of time. Compared with the SDRE based SMC, the proposed controller is superior in terms of capability to track a fast and highly complicated trajectory and no need to determine time-varying disturbances and uncertainties bounds. The case study is a Selective Compliant Articulated Robot for Assembly (SCARA) flexible joint manipulator as a representative of highly nonlinear, coupled, large robotic systems. Simulation results easily verify the effectiveness and superiority of the proposed controller.  相似文献   

20.
In this paper, a sensorless speed control for interior permanent magnet synchronous motors (IPMSM) is designed by combining a robust backstepping controller with integral actions and an adaptive interconnected observer. The IPMSM control design generally requires rotor position measurement. Then, to eliminate this sensor, an adaptive interconnected observer is designed to estimate the rotor position and the speed. Moreover, a robust nonlinear control based on the backstepping algorithm is designed where an integral action is introduced in order to improve the robust properties of the controller. The stability of the closed-loop system with the observer–controller scheme is analyzed and sufficient conditions are given to prove the practical stability. Simulation results are shown to illustrate the performance of the proposed scheme under parametric uncertainties and low speed. Furthermore, the proposed integral backstepping control is compared with the classical backstepping controller.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号