首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
This paper studies the adaptive tracking control problem for a class of uncertain high-order fully actuated (HOFA) systems with actuator faults and full-state constraints. Firstly, we design a novel nonlinear transformation function (NTF) only related to state and constraint boundaries and capable of handling asymmetric time-varying constraints. With the designed function, we obtain an equivalent totally unconstrained HOFA model which is generally simpler to design controllers than first-order state-space model. Then, the adaptive fault-tolerant controller is constructed with the help of the HOFA approach. By applying the Lyapunov stability theory, it is rigorously proved that the output tracking error converges to zero asymptotically, other signals of the resulting closed-loop systems are bounded, and full-state constraints are not violated for all time. Finally, the simulation results verify the efficiency of the proposed control design method.  相似文献   

2.
In this article, the finite-time stability problem is investigated for a kind of stochastic nonlinear systems subject to asymmetric output constraints. Firstly, a new asymmetric barrier Lyapunov function (BLF) is introduced to deal with the constraint on output variable. Further, through incorporating the proposed BLF into the adding a power integrator technique, a state-feedback controller is explicitly designed. With the help of the stochastic Lyapunov stability theory, it is then proved that the origins of the considered systems are finite-time stable in probability under the designed controller. Meanwhile, the proposed control scheme also guarantees that the pre-given output constraint is not violated in the almost sure sense. Finally, the simulation results of an example are provided to demonstrate the derived theoretical conclusion.  相似文献   

3.
In this paper, the problem of the predefined-time tracking with time-varying output constraints (TVOC) is investigated for a class of nonlinear strict-feedback systems. First, the sufficient conditions for the studied problem are presented. Then, a recursive design algorithm of the controller is proposed by backstepping technique. A novel stabilizing function is constructed by adding a fractional term, which is capable of decreasing the asymmetric time-varying Barrier Lyapunov Function (BLF) to the origin within any desired settling time. After that, it is shown that under our proposed control, all the closed-loop signals are bounded, and the tracking error converges to zero within any desired settling time and remains zero thereafter without the violation of the output constraint. The settling time in this paper is not only independent of the design parameters, nor does it depend on the initial conditions, and can be set according to per our will. Finally, two examples are given to illustrate the effectiveness of the proposed method.  相似文献   

4.
This paper investigates the adaptive attitude tracking problem for the rigid satellite involving output constraint, input saturation, input time delay, and external disturbance by integrating barrier Lyapunov function (BLF) and prescribed performance control (PPC). In contrast to the existing approaches, the input delay is addressed by Pade approximation, and the actual control input concerning saturation is obtained by utilizing an auxiliary variable that simplifies the controller design with respect to mean value methods or Nussbaum function-based strategies. Due to the implementation of the BLF control, together with an interval notion-based PPC strategy, not only the system output but also the transformed error produced by PPC are constrained. An adaptive fuzzy controller is then constructed and the predesigned constraints for system output and the transformed error will not be violated. In addition, a smooth switch term is imported into the controller such that the finite time convergence for all error variables is guaranteed for a certain case while the singularity problem is avoided. Finally, simulations are provided to show the effectiveness and potential of the proposed new design techniques.  相似文献   

5.
In this paper, the consensus tracking problem is studied for a group of nonlinear heterogeneous multiagent systems with asymmetric state constraints and input delays. Different from the existing works, both input delays and asymmetric state constraints are assumed to be nonuniform and time-varying. By introducing a nonlinear mapping to handle the problem caused by state constraints, not only the feasibility condition is removed, but also the restriction on the constraint boundary functions is relaxed. The time-varying input delays are compensated by developing an auxiliary system. Furthermore, by utilizing the dynamic surface control method, neural network technology and the designed finite-time observer, the distributed adaptive control scheme is developed, which can achieve the synchronization between the followers’ output and the leader without the violation of full-state constraints. Finally, a numerical simulation is provided to verify the effectiveness of the proposed control protocol.  相似文献   

6.
In this paper, a novel backstepping-based adaptive dynamic programming (ADP) method is developed to solve the problem of intercepting a maneuver target in the presence of full-state and input constraints. To address state constraints, a barrier Lyapunov function is introduced to every backstepping procedure. An auxiliary design system is employed to compensate the input constraints. Then, an adaptive backstepping feedforward control strategy is designed, by which the tracking problem for strict-feedback systems can be reduced to an equivalence optimal regulation problem for affine nonlinear systems. Secondly, an adaptive optimal controller is developed by using ADP technique, in which a critic network is constructed to approximate the solution of the associated Hamilton–Jacobi–Bellman (HJB) equation. Therefore, the whole control scheme consists of an adaptive feedforward controller and an optimal feedback controller. By utilizing Lyapunov's direct method, all signals in the closed-loop system are guaranteed to be uniformly ultimately bounded (UUB). Finally, the effectiveness of the proposed strategy is demonstrated by using a simple nonlinear system and a nonlinear two-dimensional missile-target interception system.  相似文献   

7.
In this paper, an asymptotic adaptive dynamic surface tracking control strategy is investigated for uncertain full-state constrained nonlinear systems subject to parametric uncertainties and external disturbances. A novel disturbance estimator (DE) is firstly used to compensate for external disturbances. The parametric uncertainties are accordingly handled via a synthesized adaptive law. Then, by using the barrier Lyapunov function (BLF) and dynamic surface control (DSC), an appropriate backstepping design framework employing a novel adaptive-gain nonlinear filter is given, which avoids the “explosion of complexity” and relieves the conservatism of filter gain selection. The theoretical analysis reveals the asymptotic tracking performance is assured with the proposed controller. In the end, some simulation cases demonstrate the validity of the proposed controller.  相似文献   

8.
This paper addresses the problem of fixed-time controller design for the second-order sliding mode (SOSM) dynamics with asymmetric output constraints. Based on the construction of a barrier Lyapunov function (BLF) and the technique of adding a power integrator, a fixed-time SOSM controller that can be used to handle the asymmetric output constraint issue is developed. A strict Lyapunov stability analysis shows that the developed SOSM controller guarantees that the sliding variable can converge to the origin within a fixed time that is irrelevant to the system initial conditions. Meanwhile, the system output will never invade the boundary of the preset asymmetric constrained area. Finally, two examples are given to verify the effectiveness and the feasibility of the proposed scheme.  相似文献   

9.
In this paper, we study the consensus tracking control problem of a class of strict-feedback multi-agent systems (MASs) with uncertain nonlinear dynamics, input saturation, output and partial state constraints (PSCs) which are assumed to be time-varying. An adaptive distributed control scheme is proposed for consensus achievement via output feedback and event-triggered strategy in directed networks containing a spanning tree. To handle saturated control inputs, a linear form of the control input is adopted by transforming the saturation function. The radial basis function neural network (RBFNN) is applied to approximate the uncertain nonlinear dynamics. Since the system outputs are the only available data, a high-gain adaptive observer based on RBFNN is constructed to estimate the unmeasurable states. To ensure that the constraints of system outputs and partial states are never violated, a barrier Lyapunov function (BLF) with time-varying boundary function is constructed. Event-triggered control (ETC) strategy is applied to save communication resources. By using backstepping design method, the proposed distributed controller can guarantee the boundedness of all system signals, consensus tracking with a bounded error and avoidance of Zeno behavior. Finally, the correctness of the theoretical results is verified by computer simulation.  相似文献   

10.
This work is dedicated to solving the adaptive fuzzy decentralized tracking control issue of large-scale nonlinear systems with full-state constraints. Different with barrier Lyapunov function, the main difference is that a novel nonlinear state-dependent function (NSDF) is introduced to prevent the state constraints being overstepped. Based on NSDF, the necessary feasibility conditions for virtual controllers are completely removed. Then, the prior knowledge of the unknown virtual control coefficients is no longer required since the original system is transformed via the new affine variable. Under the control strategy, three objectives on system performance are achieved: (a) all signals of the closed-loop system are bounded; (b) the subsystem output closely tracks the reference trajectory and original error is ultimately uniformly bounded; (c) the full-state constraints are not violated for all the time. At the end, two simulation examples are shown to verify the effectiveness of the control method.  相似文献   

11.
This paper presents a fixed-time composite neural learning control scheme for nonlinear strict-feedback systems subject to unknown dynamics and state constraints. To address the problem of state constraints, a new unified universal barrier Lyapunov function is proposed to convert the constrained system into an unconstrained one. Taking the unconstrained system, a modified fixed-time convergence state predictor is explored, enabling the prediction error for compensating the neural adaptive law to be obtained and improving the learning ability of online neural networks (NNs). Without employing fractional power terms or a complicated switching strategy to build the control law, a new method of constructing a smooth fixed-time dynamic surface control scheme is proposed. This overcomes the potential singularity problem and the explosion of complexity often encountered in fixed-time back-stepping designs. The representative features of our design are threefold. First, it is free of the fractional power terms, yet offers fixed-time convergence. Second, it addresses the state constraint problem without requiring a feasibility check. Third, it constructs a new state-predictor and enhances the approximation accuracy of NNs. The stability of the proposed control scheme is analyzed using the Lyapunov technique. Simulation results are presented to illustrate the effectiveness of the proposed controller.  相似文献   

12.
This paper considers the topic of adaptive leader-following fault-tolerant tracking control for a class of non-strict feedback nonlinear multi-agent systems with or without state constraints in a unified solution. Through the use of certain transformation techniques, the original constraint system is recast as a new completely unconstrained system. Compared with the existing results, the limitation that the constraint functions need upper bound is relaxed. By employing radial basis function neural networks (RBFNNs) to approximate the unknown functions. A novel adaptive fault-tolerant consensus tracking control (CTC) manner is raised with command filtered backstepping design. Then, through the Lyapunov stability analysis, the proposed scheme can ensure all signals in the closed-loop system are cooperative semi-globally uniformly ultimately bounded (SGUUB). Finally, simulation example confirms the efficiency of the proposed method.  相似文献   

13.
This article considers the nonlinear time-delay system with full-state constrains and actuator hysteresis. Compared with the previous research on input hysteresis phenomenon, all states in the system are required to be constrained in a bounded compact set and the direction of hysteresis is unknown. Thus, the system is difficult to be stabilized and get perfect error tracking performance, and the design procedure is more complicated. By combining barrier Lyapunov functions (BLFs) and Nussbaum functions, a new virtual controller is designed, which combines the properties of Nussbaum function with fuzzy logic systems (FLSs). Furthermore, considering that the rate-dependent characteristic of actuator hysteresis will adversely affect the stability of networked control systems (NCSs), a first-order filter is used to solve the problem, but it brings challenges to the design of Lyapunov–Krasovskii functions (KLFs). Thus, a new LKFs is constructed to compensate for the adverse effects of state delay on the nonlinear system. What’s more, this article propose event-triggered technique to solve the coupling effect of the system communication resource constrains. The proposed adaptive control strategy ensures the boundedness of all signals and does not violate the state constraints, and the controller avoids Zeno behavior, and the tracking error fluctuates around zero in a predetermined compression range. Finally, two simulations results verify the effectiveness of the adaptive control strategy.  相似文献   

14.
This paper addresses the event-triggered tracking control design for state-constrained switched nonstrict feedback nonlinear systems. With the help of a time-varying nonlinear shifting function (TVNSF) introduced into the switched nonlinear system, the proposed solution is seen as a unified tool regardless of whether the constraint conditions are state constraints, output constraint, or even no constraint. Also, by allowing the triggering error to vary with the switching signal in time, the negative effects of the mismatch between the individual controller and the subsystem on system performance are trumped. Moreover, by using constructed individual Lyapunov function that depends on the lower bound of the control gain function of individual subsystem, a novel switching signal satisfying the average dwell time (ADT) is provided to ensure the boundedness of all variables in the closed-loop system. Finally, the proposed theory is carried over into a mass-spring-damper system to verify its effectiveness.  相似文献   

15.
《Journal of The Franklin Institute》2022,359(18):10392-10419
This paper proposes a high-precision three-dimensional nonlinear optimal computational guidance law in the terminal phase of an interceptor that ensures near-zero miss-distance as well as the desired impact angle. Additionally, it achieves these ambitious objectives while ensuring that the lead angle and lateral acceleration constraints are not violated throughout its trajectory. This ensures (i) the target does not escape the field of view of its seeker at any point in time (a state constraint) and (ii) it does not demand unreasonable lateral acceleration that cannot be generated (a control constraint). The guidance problem is formulated and solved using newly proposed Path-constrained Model Predictive Static Programming (PC-MPSP) framework. All constraints, both equality and inequality, are equivalently represented as linear constraints in terms of the errors in the control history, thereby reducing the complexity and dimensionality of the problem significantly. Coupled with a quadratic cost function in control, the problem is then reduced to a standard quadratic optimization problem with linear constraints, which is then solved using the computationally efficient interior-point method. Results clearly demonstrate the advantage of the proposed guidance scheme over the conventional Biased PN as well as the recently proposed GENeralized EXplicit (GENEX) guidance techniques. Numerical simulations with variation in initial conditions and Monte–Carlo simulations with parametric uncertainty demonstrate the robustness of the proposed guidance scheme.  相似文献   

16.
This paper is concerned with the adaptive control problem of a class of output feedback nonlinear systems with unmodeled dynamics and output constraint. Two dynamic surface control design approaches based on integral barrier Lyapunov function are proposed to design controller ensuring both desired tracking performance and constraint satisfaction. The radial basis function neural networks are utilized to approximate unknown nonlinear continuous functions. K-filters and dynamic signal are introduced to estimate the unmeasured states and deal with the dynamic uncertainties, respectively. By theoretical analysis, the closed-loop control system is proved to be semi-globally uniformly ultimately bounded, while the output constraint is never violated. Simulation results demonstrate the effectiveness of the proposed approaches.  相似文献   

17.
This paper addresses the problem of leader-follower consensus fault-tolerant control for a class of nonlinear multi-agent systems with output constraints. Specifically, a new nonlinear state transformation function is proposed to deal with the asymmetric constraint on output. Moreover, by integrating backstepping and radial basis function neural network approaches, an adaptive consensus control framework is developed with a single parameter estimator, which mitigates the computation of control algorithm in comparison with conventional adaptive approximation based control techniques. Then an adaptive compensation method is proposed to eliminate the effect of actuator failure. Under the proposed control scheme, all the closed-loop signals of the systems are bounded and the consensus tracking error converges to an adjustable small neighborhood of zero. To evaluate the developed control algorithm, a group of four networked two-stage chemical reactors is used to illustrate the effectiveness of the theoretic results obtained.  相似文献   

18.
In this paper, a novel adaptive integrated guidance and control (IGC) scheme is proposed for skid-to-turn (STT) missile with partial state constraints and actuator faults. Considering the strict-feedback form of the IGC model, the dynamic surface control (DSC) approach is adopted to design the IGC scheme. To prevent the attack angle, sideslip angle and velocity deflection angle from violating the constraints, the barrier Lyapunov function (BLF) and modified saturation function are employed in the IGC design procedure. Moreover, an auxiliary system is constructed to remove the adverse effects that caused by the modified saturation function. The adaptive laws are constructed to estimate the actuation effectiveness of actuators and the upper bounds of lumped uncertainties in the IGC model. It is theoretically shown that all signals in the closed-loop system are bounded while the state constraints are not violated in presence of actuator faults and uncertainties. Numerical simulation results are presented to verify the effectiveness and robustness of the proposed IGC scheme.  相似文献   

19.
The comprehensive effect of external disturbance, measurement delay, unmeasurable states and input saturation makes the difficulties and challenges for a HAGC system. In this paper, an adaptive fuzzy output feedback control scheme is designed for a HAGC system under the simultaneous consideration of those factors. At the first place, by state transformation technique, the dynamic model of a HAGC system is simply expressed as a strict feedback form, where measurement delay is converted into input delay. Then, an auxiliary system is employed to compensate for the effect of input delay. Furthermore, an asymmetric barrier Lyapunov function (BLF) is constructed to ensure the output error constraint requirement of thickness error and the fuzzy observer is established to solve unmeasurable states, unknown nonlinear functions at the same time. With the aid of backstepping method, adaptive fuzzy controller is developed to assure that the closed-loop system is semi-globally boundedness and the output error of thickness error doesn’t violate its constraint. At the end, compared simulations are carried out to verify the efficiency of the proposed control scheme.  相似文献   

20.
The main objective of this paper is to present a non-predictive method in the design of nonlinear multi-input multi-output (MIMO) control systems with the presence of constraints that are determinant in practical conditions, namely, the frequency bandwidth limitation of the actuation system and saturation boundaries in control commands. If these constraints are applied in the non-predictive control design problem, it is not possible to simultaneously satisfy Lyapunov stability and actuation constraints, analytically. Instead of model-predictive-based algorithms, which in most cases are computationally expensive, this paper proposes an algorithm based on synthetic Lyapunov stability. In this technique, by defining an intelligent filter applied to the system desired trajectories, defining intelligent proximity coefficients in decoupled inequalities resulting from Lyapunov stability, and determining the admissible boundaries of control commands, a space of regulatory parameters is generated. By appropriately adjusting these parameters based on statistical analysis conducted on the overall dynamics of the system, the Lyapunov stability is guaranteed, and the mentioned control constraints are not violated. In summary, the proposed control algorithm includes the formulation of discrete-time dynamics of sliding functions, the presentation of the procedure of defining and adjusting the control algorithm parameters with the proposed synthetic stability criterion, and the calculation of control inputs based on constraints imposed on the problem. Finally, the algorithm is applied to a cart moving in the X-Y plane, including two rigid cooperative arms that are carrying a load. The most important features of synthetic Lyapunov stability compared to the model predictive-based method are its small computational load and its acceptable performance in satisfying both the Lyapunov stability conditions and determinant control constraints in more realistic situations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号