首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper is concerned with the finite-time fault detection (FTFD) problem for a class of delayed networked systems subject to conic-type nonlinearity and randomly occurring deception attacks (RODAs) via dynamic event-triggered mechanism (DETM). The nonlinear function with the conic-type constraint is limited to a known hypersphere with uncertain center. Moreover, a variable governed by Bernoulli distribution is introduced to characterize the RODAs phenomenon. In order to reduce unnecessary communication transmissions, a DETM is considered in the design of finite-time fault detection filter (FTFDF) for the addressed networked systems with time-delays. This paper focuses on the design of an FTFDF via the DETM to ensure the finite-time stochastic stability of error dynamics system with satisfactory the prescribed H performance. Moreover, the desired FTFDF parameter matrices are obtained by solving linear matrix inequalities. In the end, a simulation example is employed to illustrate the validity of the proposed FTFD method.  相似文献   

2.
This paper is concerned with the event-based fault detection for the networked systems with communication delay and nonlinear perturbation. We propose an event-triggered scheme, which has some advantages over existing ones. The sensor data is transmitted only when the specified event condition involving the sampled measurements of the plant is violated. An event-based fault detection model is firstly constructed by taking the effect of event-triggered scheme and the network transmission delay into consideration. The main purpose of this paper is to design an event-based fault detection filter such that, for all unknown input, communication delay and nonlinear perturbation, the error between the residual signal and the fault signal is made as small as possible. Sufficient conditions for the existence of the desired fault detection filter are established in terms of linear matrix inequalities. Based on these conditions, the explicit expression is given for the designed fault detection filter parameters. A numerical example is employed to illustrate the advantage of the introduced event-triggered scheme and the effectiveness of the proposed method.  相似文献   

3.
In this paper, the exponential synchronization problem is investigated for a class of continuous-time complex dynamical networks (CDNs) with proportional-integral control strategy and dynamic event-triggered mechanism (DETM). To reduce communication overhead, a novel DETM is proposed to decide whether a certain control signal generated by proportional-integral controller should be transmitted or not. The dynamics of each network node is analyzed in conjunction with the proposed proportional-integral strategy under the DETM, and then a sufficient condition for achieving exponential synchronization of CDNs is provided. The validity of the DETM is further verified by the exclusion of the Zeno behavior. The gain matrices of the controller and the parameters of the DETM are jointly designed. The effectiveness of the proportional-integral control strategy under the DETM is demonstrated by a numerical example.  相似文献   

4.
This paper investigates output-based dynamic event-triggered control for networked control systems (NCSs), in which hybrid cyber attacks randomly occur in communication network. First, a gain adjustable dynamic output feedback (DOF) controller is designed for NCSs and relaxes state-available constraint in presence of three types of attacks, including stochastic deception attacks, replay attacks and aperiodic denial-of-service (DoS) attacks. Second, a output-based dynamic event-triggered mechanism (DETM) is designed to optimize limited network resources under the cyber attacks. Third, a new switched system is established to describe the effect of hybrid cyber attacks, the DOF controller and the DETM simultaneously. Then, criteria for guaranteeing asymptotically stability of the switched system are obtained. Furthermore, the co-design method of DETM and DOF controller is provided to maintain the NCSs stability. Finally, an example is presented to show the effectiveness of the proposed methods in this paper.  相似文献   

5.
This paper investigates the problem of event-triggered fault detection filter design for nonlinear networked control systems with both sensor faults and process faults. First, Takagi–Sugeno (T–S) fuzzy model is utilized to represent the nonlinear systems with faults and disturbances. Second, a discrete event-triggered communication scheme is proposed to reduce the utilization of limited network bandwidth between filter and original system. At the same time, considering network-induced delays and event-triggered scheme, a novel T–S fuzzy fault detection filter is constructed to generate a residual signal, which has nonsynchronous premise variables with the original T–S fuzzy system. Then, the fuzzy Lyapunov functional based approach and the reciprocally convex approach are developed such that the obtained sufficient conditions ensure that the fuzzy fault detection system is asymptotically stable with H performance and is less conservative. All the conditions are given in terms of linear matrix inequalities (LMIs), which can be solved by LMI tools in MATLAB environment. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed results.  相似文献   

6.
This paper investigates the problem of event-triggered filter design for nonlinear networked control systems (NCSs) in the framework of interval type-2 (IT2) fuzzy systems. A novel IT2 fuzzy filter for ensuring asymptotic stability and H performance of filtering error system is proposed, where the premise variables are different from those of the fuzzy model. Attention is focused on solving the problem of event-triggered filter design subject to parameter uncertainties, data quantization, and communication delay in a unified frame. It is shown that the proposed event-triggered filter design communication mechanism for IT2 fuzzy NCSs has the advantage of the existing event-triggered approaches to reduce the utilization of limited network resources and provides flexibility in balancing the tracking error and the utilization of network resources. Finally, simulation example is given to validate the advantages of the presented results.  相似文献   

7.
This paper addresses the problem of robust integrated fault estimation (FE) and fault-tolerant control (FTC) for a class of discrete-time networked Takagi–Sugeno (T–S) fuzzy systems with two-channel event-triggered schemes, input quantization and incomplete measurements. The incomplete information under consideration includes randomly occurring sensor saturation and randomly occurring quantization. In order to save the limited networked resources, this paper firstly proposed a novel dynamic event-triggered scheme on the sensor side and a static one on the controller side. Secondly, an event-triggered FE observer for the T–S fuzzy model is designed to estimate actuator faults and system states, simultaneously. Then, a specified discrete sliding surface in the state-estimation space is constructed. By using time-delay analysis technique and considering the effects of event-triggered scheme, quantization, networked conditions, actuator fault and external disturbance, the sliding mode dynamics and error dynamics are unified into a new networked time-delay model. Based on this model, sufficient conditions are established such that the resulting augmented fuzzy system is stochastically stable with a prescribed H performance level with a single-step linear matrix inequality (LMI) formulation. Furthermore, an observer-based sliding mode controller for reaching motion is synthesized to guarantee the reachability of the sliding surface. Finally, a single-link flexible manipulator example is present to illustrate the effectiveness of the proposed method.  相似文献   

8.
This paper investigates the optimal tracking control problem (OTCP) for nonlinear stochastic systems with input constraints under the dynamic event-triggered mechanism (DETM). Firstly, the OTCP is converted into the stabilizing optimization control problem by constructing a novel stochastic augmented system. The discounted performance index with nonquadratic utility function is formulated such that the input constraint can be encoded into the optimization problem. Then the adaptive dynamic programming (ADP) method of the critic-only architecture is employed to approximate the solutions of the OTCP. Unlike the conventional ADP methods based on time-driven mechanism or static event-triggered mechanism (SETM), the proposed adaptive control scheme integrates the DETM to further lighten the computing and communication loads. Furthermore, the uniform ultimately boundedness (UUB) of the critic weights and the tracking error are analysed with the Lyapunov theory. Finally, the simulation results are provided to validate the effectiveness of the proposed approach.  相似文献   

9.
《Journal of The Franklin Institute》2019,356(17):10335-10354
This paper is devoted to investigate the designs of the event-based distributed state estimation and fault detection of the nonlinear stochastic systems over wireless sensor networks (WSNs). The nonlinear stochastic systems as well as the filters corresponding to the multiple sensors are represented by interval type-2 Takagi–Sugeno (T–S) fuzzy models. (1) A new type of fuzzy distributed filters based on event-triggered mechanism is established corresponding to the nodes of the WSN. (2) The overall stability and performance, that is mean-square asymptotic stability in H sense, of the event-driven fault detection system is analyzed based on Lyapunov stability theory. (3) New techniques are developed to cope with the problem of parametric matrix decoupling for solving the distributed filter gains. (4) Finally, the desired event-based distributed filter matrices are designed subject to the numbers of the fuzzy rules and a series of matrix inequalities. A simulation case is detailed to show the effectiveness of the presented event-based distributed fault detection filtering scheme.  相似文献   

10.
We address the leader-following tracking consensus issue for a class of linear multi-agent systems (MASs) via dynamic event-triggered (DET) approaches in this paper. The DET communication mechanism is introduced by an additional internal dynamic variable, and is developed to schedule agents’ data transmission. State observers are also employed to tackle the scenario wherein inner information of follower agents are not available for measurement. And then, state-based and observer-based distributed control proposals are proposed on the basis of dynamic event-triggered mechanism (DETM), respectively. To avoid continuous measurement information monitor, we present a technical approach for generation of the combinational information from their own neighboring agents only at event instants. The stabilities of the resulting closed-loop systems, both state-feedback one and output-feedback one, are rigorously analyzed in theory, and it is proven that all signals in the closed-loop system are bounded and Zeno behavior is also excluded. Simulation examples are presented to illustrate the theoretical claims.  相似文献   

11.
《Journal of The Franklin Institute》2021,358(18):10052-10078
This paper is concerned with the fixed-time quasi-synchronization of coupled memristive neural networks (CMNNs). The communication channel is subject to the deception attack described by the Bernoulli stochastic variable. To reduce signal transmissions, a dual-channel event-triggered mechanism is proposed. In each channel of sensor to controller and controller to actuator, an event-triggered mechanism is designed. Compared with the single event-triggered mechanism in the communication loop, the main difficulties lie in how to deal with the problems of packet scheduling and network attacks. By using Lyapunov method combining with a new proposed lemma, some sufficient conditions are derived to guarantee the leader-following quasi-synchronization of CMNNs. The Zeno behavior is excluded for the designed dual-channel event-triggered mechanism. The influence of the event-triggered mechanism on the estimation of settling time is discussed. Three numerical examples are provided to show the effectiveness of the theoretical results.  相似文献   

12.
This paper is concerned with the event-triggered fault estimation and fault-tolerant control for continuous-time dynamic systems subject to system fault and external disturbance under network environment. Firstly, based on the event-triggered sampling, a fault diagnosis observer is constructed to estimate both the system state and the system fault simultaneously, and a multi-objective constraint is established to guarantee the estimation accuracy. Based on the estimated system state and fault signal, a fault-tolerant controller is proposed to compensate the influence of occurred faults and maintain the system performance. The event-triggered scheme and the fault-tolerant controller are co-designed to guarantee the required performance of faulty system and reduce the consumption of communication resources. Finally, simulation results of an F-404 aircraft engine system are provided to demonstrate the effectiveness of the proposed method.  相似文献   

13.
In this paper, a security consistent tracking control scheme with event-triggered strategy and sensor attacks is developed for a class of nonlinear multi-agent systems. For the sensor attacks on the system, a security measurement preselector and a state observer are introduced to combat the impact of the attacks and achieve secure state estimation. In addition, command filtering technology is introduced to overcome the “complexity explosion” caused by the use of the backstepping approach. Subsequently, a new dynamic event-triggered strategy is proposed, in which the triggering conditions are no longer constants but can be adjusted in real time according to the adaptive variables, so that the designed event-triggered mechanism has stronger online update ability. The measurement states are only transmitted through the network based on event-triggered conditions. The proposed adaptive backstepping algorithm not only ensures the security of the system under sensor attacks but also saves network resources and ensures the consistent tracking performance of multi-agent systems. The boundedness of all closed-loop signals is proved by Lyapunov stability analysis. Simulation examples show the effectiveness of the control scheme.  相似文献   

14.
In this paper, we study the hybrid-triggered dynamic output feedback-based guaranteed cost control issue for uncertain Takagi-Sugeno (T-S) fuzzy networked control systems (NCSs) with cyber attack and actuator saturation. The hybrid-triggered mechanism comprising of time-triggered mechanism (TTM) and event-triggered mechanism (ETM) is provided to adjust the trigger strategy due to the variety in network resource utilization. Both the switching between two trigger mechanisms and the cyber attack phenomenon in communication network are respectively represented by two Bernoulli distributions. The data quantization is characterized by the sector bound technique and actuator saturation is addressed by invoking an auxiliary matrix. The stability of closed-loop NCSs with bounded disturbance and cyber attack is expressed by the methodology of quadratic boundedness (QB). The existence criteria and design strategies for minimizing the upper bound of performance in view of dynamic output feedback controller are constructed for any admissible uncertainties. Subsequently, in the light of the cone complementarity linearization (CCL) algorithm, the controller design issue is cast into the convex optimization issue which is capable of solving by the technique about linear matrix inequalities (LMIs). Finally, simulation example is employed to demonstrate the validity of designed controller.  相似文献   

15.
This paper is concerned with the dynamic quantized control for switched fuzzy systems with singular perturbation and an improved event-triggered protocol. Essentially apart from the transition probabilities, the nonhomogeneous sojourn probabilities are employed to characterize the dynamic behavior of switched fuzzy singularly perturbed systems based on a deterministic switching signal. Benefiting from the dynamic quantization parameter, the quantization-based event-triggered protocol is presented, thereby decreasing the communication load. Based on the hidden Markov model, a novel event-triggered asynchronous control law is built. Finally, two examples are shown to clarify the practicality of the obtained results.  相似文献   

16.
This paper studies the cooperative adaptive dual-condition event-triggered tracking control problem for the uncertain nonlinear nonstrict feedback multi-agent systems with nonlinear faults and unknown disturbances. Under the framework of backstepping technology, a new threshold update method is designed for the state event-triggered mechanism. At the same time, we develop a novel distributed dual-condition event-triggered strategy that combined the fixed threshold triggered mechanism acted on the controller with the new event-triggered mechanism, which can better reduce the waste of communication bandwidth. To deal with the algebraic loop problem caused by the non-affine nonlinear fault, the Butterworth low-pass filter is introduced. At the same time, the unknown function problems are solved by the neural network technology. All signals of the system are semiglobally uniformly ultimately bounded and the tracking performance is achieved, which proved by the Lyapunov stability theorem. Finally, the results of the simulation test the efficiency of the proposed control scheme.  相似文献   

17.
This paper studies event-triggered synchronization control problem for delayed neural networks with quantization and actuator saturation. Firstly, in order to reduce the load of network meanwhile retain required performance of system, the event-triggered scheme is adopted to determine if the sampled signal will be transmitted to the quantizer. Secondly, a synchronization error model is constructed to describe the master-slave synchronization system with event-triggered scheme, quantization and input saturation in a unified framework. Thirdly, on the basis of Lyapunov–Krasovskii functional, sufficient conditions for stabilization are derived which can ensure synchronization of the master system and slave system; particularly, a co-designed parameters of controller and the corresponding event-triggered parameters are obtained under the above stability condition. Lastly, two numerical examples are employed to illustrate the effectiveness of the proposed approach.  相似文献   

18.
In this paper, the event-triggered non-fragile H fault detection filter is designed for a class of discrete-time nonlinear systems subject to time-varying delays and channel fadings. The Lth Rice fading model is utilized to reflect the actual received measurement signals, and its channel coefficients own arbitrary probability density functions on interval [0,1]. The event-based filter is constructed to reduce unnecessary data transmissions in the communication channel, which only updates the measurement signal to the filter when the prespecified “event” is triggered. Multiplicative gain variations are utilized to describe the phenomenon of parameter variations in actual implementation of the filter. Based on Lyapunov stability theory, stochastic analysis technology along with linear matrix inequalities (LMIs) skills, sufficient conditions for the existence of the non-fragile fault detection filter are obtained which make the filtering error system stochastically stable and satisfy the H constraint. The gains of the filter can be calculated out by solving the feasible solution to a certain LMI. A simulation example is given to show the effectiveness of the proposed method.  相似文献   

19.
This paper investigates the control-based event-triggered sliding mode control for a networked linear system whose feedback information is transmitted over a digital communication network. In this paper, a novel event-triggered mechanism based on control value is proposed. Different from traditional event-triggered mechanisms that are normally based on states, our mechanism pays more attention to the desired control input value of the system. When the deviation between the current control input and the control input being calculated on the basis of the previous system state exceeds a given threshold, an event is triggered. For the sake of reducing the information to be transmitted, a quantization policy is executed and only a few bits are needed to transmit the feedback symbol of each sample. The combination of the control-based event-triggered mechanism and the quantization policy can significantly reduce both the transmission frequency and the number of bits of each feedback packet. For the concerned system, sliding mode control is implemented. The reachability of the sliding mode surface and the robust stability of the system are analyzed by fully taking quantization effects into account. Moreover, the effects of transmission delay of feedback packets on the event-triggering mechanism are considered. Under the proposed mechanism, the lower bound of event intervals is proven to be non-zero, i.e., the Zeno behavior is excluded. Simulations of a mechanical system are done to further verify the superiority of the proposed mechanism.  相似文献   

20.
This article aims at investigating the event-triggered (ET) distributed estimation problem for asynchronous sensor networks with randomly occurred unreliable measurements. We propose two ET mechanisms to schedule data transmissions in this paper. One ET mechanism based on dual-criterion is proposed to schedule the transmissions of measurements and avoid the interferences from unreliable measurements. The other ET mechanism is proposed to schedule the transmissions of local estimates. The connotative information in aforementioned ET mechanisms is exploited for taking full use of available information. Then, we provide the corresponding event-triggered asynchronous diffusion estimator based on the diffusion filtering scheme. In the proposed method, a sensor first generates a local estimate by utilizing available information of asynchronous measurements in each estimation period. Then it fuses available information of asynchronous local estimates to generate a fused estimate. Results of simulations in different cases and experiment in an optical-electronic detection network verify the validity and feasibility of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号