首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
In this paper, the practically input-to-state stabilization issue is considered for the stochastic delayed differential systems (SDDSs) with exogenous disturbances. To reduce the transmission frequency of the feedback control signal, the proposed SDDSs are stabilized by an event-triggered strategy. The concept of the practically input-to-state stability (ISS) is used to describe the dynamic performance of control target in the event-triggered schemes and exogenous disturbances. Besides, the considered SDDSs is stabilized by an event-triggered feedback controller which is represented by linear matrix inequalities. Moreover, lower bound of the interaction time of the event-triggered control method is obtained to avoid the Zeno behavior of the proposed event-triggering scheme. Finally, the effectiveness of the conclusion is verified by a numerical example.  相似文献   

2.
3.
This paper concerns data transmissions for large-scale T–S fuzzy systems with event-triggering control, where each subsystem communicates its information via a two-channel network. We propose an event-triggering scheme in which two event-triggering mechanisms are used to verify the data transmissions. At first, a novel model transformation is presented, where the event-triggered control system is reconstructed as a constant-delay system with extra inputs and outputs. By using a relaxed Lyapunov–Krasovskii functional (LKF) without the requirement of positive definiteness for all Lyapunov matrices, and the scaled small gain (SSG) theorem, the co-design problem of desired observer and controller gains, event-triggering parameters, and the sampling period is resolved in the form of linear matrix inequalities (LMIs). It will be shown that the solution guarantees the stability of closed-loop fuzzy control system and the reductions of data communications in both the sensor-to-controller and controller-to-actuator channels. The proposed method is validated by using a numerical example.  相似文献   

4.
In this paper, we study the robust cooperative output regulation problem of heterogeneous linear multi-agent systems with system uncertainties and directed communication topology. A robust distributed event-triggered control scheme is proposed based on the internal model principle. To avoid continuous monitoring of measurement errors for the event-triggering condition, a novel self-triggered control scheme is further proposed. Moreover, by introducing a fixed timer in the triggering mechanisms, Zeno behavior can be excluded for each agent. An example is finally provided to demonstrate the effectiveness of the proposed self-triggered control scheme.  相似文献   

5.
This article investigates the finite-time consensus problem for the attitude system of multiple spacecraft under directed graph, where the communication bandwidth constraint, inertia matrix uncertainties and external disturbances are considered. An event-triggered communication mechanism is developed to address the problem of communication bandwidth constraint. In this event-triggered mechanism, spacecraft sends their attitude information to their neighbors only when the given event is triggered. Furthermore, an adaptive law is designed to counteract the effect of inertia matrix uncertainties and external disturbances. Then, a finite-time attitude consensus tracking control scheme is proposed based on the event-triggered communication mechanism and adaptive law. The proposed control scheme can guarantee the finite-time stability and convergence of the multiple spacecraft systems and exclude the Zeno phenomenon. Finally, simulation results validate the effectiveness of the proposed control scheme.  相似文献   

6.
In this work, a lifted event-triggered iterative learning control (lifted ETILC) is proposed aiming for addressing all the key issues of heterogeneous dynamics, switching topologies, limited resources, and model-dependence in the consensus of nonlinear multi-agent systems (MASs). First, we establish a linear data model for describing the I/O relationships of the heterogeneous nonlinear agents as a linear parametric form to make the non-affine structural MAS affine with respect to the control input. Both the heterogeneous dynamics and uncertainties of the agents are included in the parameters of the linear data model, which are then estimated through an iterative projection algorithm. On this basis, a lifted event-triggered learning consensus is proposed with an event-triggering condition derived through a Lyapunov function. In this work, no threshold condition but the event-triggering condition is used which plays a key role in guaranteeing both the stability and the iterative convergence of the proposed lifted ETILC. The proposed method can reduce the number of control actions significantly in batches while guaranteeing the iterative convergence of tracking error. Both rigorous analysis and simulations are provided and confirm the validity of the lifted ETILC.  相似文献   

7.
This paper is concerned with event-triggered cooperative control of a platoon of connected vehicles via vehicular ad hoc networks (VANETs). To reduce communications among vehicles, we introduce a hybrid event-triggered transmission mechanism based on both time elapsed and state error. The effect of time-varying transmission delay and communication energy constraint can be also taken into account in the system modeling and design procedures. The on-board sensors use different power levels to transmit information resulting in different packet loss rates. The vehicular platoon system is proved to be exponentially mean-square stable under the hybrid event-triggering scheme and a constant time headway spacing policy. A framework for co-design of the hybrid event triggering scheme and the output feedback controller is given to guarantee platoon stability and spacing-error convergence along the stream. Numerical simulations are given to demonstrate the effectiveness of proposed method.  相似文献   

8.
This paper presents a novel event-triggered H static output-feedback control for active vehicle suspension systems with network-induced delays. The proposed control schema introduces an event-triggering mechanism in the suspension system such that the communication resources can be significantly saved. By applying some improved slack inequalities and an augmented Lyapunov–Krasovskii functional (LKF), a new design condition expressed in the form of linear matrix inequalities (LMIs) is developed to derive the desired event-triggered controller. The obtained algorithm is then employed to solve the static output-feedback control gain. Compared with the traditional sampled-data H control scheme, the proposed controller is able to provide an enhanced disturbance attenuation level while saving the control cost. Finally, comparative simulation results are provided to show the performance of the proposed event-triggered controller.  相似文献   

9.
In this paper, we mainly investigate the finite-time consensus problem of general linear multi-agent systems. The paper proposed a suitable event-triggered control strategy. The strategy has some desirable properties including: distributed, independent, and asynchronous. It is theoretical demonstrated that the multi-agent system can achieve consensus in a certain time regardless of the initial condition under this event-triggered control scheme. In addition, without finding singular triggering problem, we prove the feasibility of this proposed event-triggered control protocol. Finally, we put forward some simulation graphs for the sake of showing the availability of our conclusions.  相似文献   

10.
This paper deals with the problem of boundary control for a class of semi-linear parabolic partial differential equations (PDEs) with non-collocated distributed event-triggered observation. A semi-linear Luenberger PDE observer with an output error based event-triggering condition is constructed by using the event-triggered observation to exponentially track the PDE state. By the estimated state, a feedback controller is proposed. It has been shown by the Lyapunov technique, and a variant of Poincaré–Wirtinger inequality that the resulting closed-loop coupled PDEs is exponentially stable if a sufficient condition presented in terms of standard linear matrix inequality (LMI) is satisfied. Moreover, a rigorous proof is provided for existence of a minimal dwell-time between two triggering times. Finally, numerical simulation results are given to show the effectiveness of the proposed design method.  相似文献   

11.
This work is concerned with the problem of reachable set synthesis for a class of singular systems with time-varying delay via the adaptive event-triggered scheme. Compared with the static event-triggered mechanism, the adaptive event-triggered mechanism can save the communication resources more effectively. By virtue of Lyapunov stability theory, sufficient conditions are given to guarantee the stability of the closed-loop system and that the reachable set of the resulting system is bounded by the obtained ellipsoid. In addition, by using linear matrix inequality technique and free-weighting matrix method, the weighting matrix of event-triggered condition and proportional-derivative (P-D) feedback controller gains are obtained. The effectiveness and superiority of the developed control approach are substantiated by a numerical example and two practical examples.  相似文献   

12.
The event-triggered synchronization control problem is concerned for a class of complex networks with nonlinearly coupling function and adaptive coupling strength. Given a state-based event-trigger mechanism and the threshold, an event-triggered control method is introduced to make complex networks achieve exponential synchronization. By combining the Lyapunov stability theory and the knowledge of graph theory, a sufficient condition is established such that complex networks can achieve exponential synchronization. Then, the feasibility of the event-triggered control is analyzed. Moreover, the second-order Kuramoto oscillators is taken into account. And the event-triggered control strategy is used to make the oscillators achieve exponential synchronization. Meanwhile, two simulation results about the second-order Kuramoto oscillators are given to show the effectiveness of results.  相似文献   

13.
《Journal of The Franklin Institute》2019,356(17):10296-10314
This paper investigates the problem of distributed event-triggered sliding mode control (SMC) for switched systems with limited communication capacity. Moreover, the system output and switching signals are both considered to be sampled by distributed digital sensors, which may cause control delay and asynchronous switching. First of all, a novel distributed event-triggering scheme for switched systems is proposed to reduce bandwidth requirements. Then, a state observer is designed to estimate the system state via sampled system output with transmission delay. Based on the observed system state, a switched SMC law and corresponding switching law are designed to guarantee the exponential stability of the closed-loop system with H performance. Finally, an application example is given to illustrate the effectiveness of the proposed method.  相似文献   

14.
This paper studies the cooperative adaptive dual-condition event-triggered tracking control problem for the uncertain nonlinear nonstrict feedback multi-agent systems with nonlinear faults and unknown disturbances. Under the framework of backstepping technology, a new threshold update method is designed for the state event-triggered mechanism. At the same time, we develop a novel distributed dual-condition event-triggered strategy that combined the fixed threshold triggered mechanism acted on the controller with the new event-triggered mechanism, which can better reduce the waste of communication bandwidth. To deal with the algebraic loop problem caused by the non-affine nonlinear fault, the Butterworth low-pass filter is introduced. At the same time, the unknown function problems are solved by the neural network technology. All signals of the system are semiglobally uniformly ultimately bounded and the tracking performance is achieved, which proved by the Lyapunov stability theorem. Finally, the results of the simulation test the efficiency of the proposed control scheme.  相似文献   

15.
In this paper, a novel event-triggered adaptive fault-tolerant control scheme is proposed for a class of nonlinear systems with unknown actuator faults. Multiplicative faults and additive faults are taken into account simultaneously, both of which may vary with time. Different from existing results, our controller fuses static reliability information and dynamic online information, which is helpful to enhance the fault-tolerant capability. With the aid of an event-triggering mechanism, an actuator switching strategy and a bound estimation approach, the communication burden is significantly reduced and the impacts of the actuator faults as well as the network-induced error are effectively compensated for. Moreover, by employing the prescribed performance control technique, the system tracking error can converge to a predefined arbitrarily small residual set with prescribed convergence rate and maximum overshoot, which implies that the proposed scheme is able to ensure rapid and accurate tracking. Simulation results are presented to illustrate the effectiveness of the proposed scheme.  相似文献   

16.
This paper studies the problem of designing a resilient control strategy for cyber-physical systems (CPSs) under denial-of-service (DoS) attacks. By constructing an H observer-based periodic event-triggered control (PETC) framework, the relationship between the event-triggering mechanism and the prediction error is obtained. Then, inspired by the maximum transmission interval, the input-to-state stability of the closed-loop system is proved. Compared with the existing methods, a Zeno-free periodic PETC scheme is designed for a continuous-time CPS with the external disturbance and measurement noise. In particular, the objective of maximizing the frequency and duration of the DoS attacks is achieved without losing robustness. Finally, two examples are given to verify the effectiveness of the proposed approach.  相似文献   

17.
In this paper, the leader-following consensus problem of general linear multi-agent systems without direct access to real-time state is investigated. A novel observer-based event-triggered tracking consensus control scheme is proposed. In the control scheme, a distributed observer is designed to estimate the relative full states, which are used in tracking consensus protocol to achieve overall consensus. And an event-triggered mechanism with estimated state-dependent event condition is adopted to update the control signals so as to reduce unnecessary data communication. Based on the Lyapunov theorem and graph theory, the proposed event-triggered control scheme is proved to implement the tracking consensus when real-time state cannot direct obtain. Moreover, such scheme can exclude Zeno-behavior. Finally, numerical simulations illustrate the effectiveness of the theoretical results.  相似文献   

18.
This work investigates the problem of distributed control for large-scale systems, in which a communication network is available to exchange information. To avoid the unnecessary communication, an event-triggered control (ETC) mechanism is introduced, in which the transmission occurs only when a certain event is triggered. Under the assumption that only the output signal is available, the static output feedback (SOF) is considered in this work. The aim of the co-design is to design an SOF controller and an ETC condition simultaneously such that the overall closed-loop system is stabilized with a certain level of performance. To this end, an event-triggering scheme based on output signals is proposed to determine when the event is triggered. Then the closed-loop system is modeled as a linear perturbed system. The distributed control co-design is formulated as a convex optimization problem with linear matrix inequalities (LMIs) constraints. Finally, a numerical example is presented to show the effectiveness of the proposed design method.  相似文献   

19.
In this paper, the attitude control problem of the spacecraft system under input/state constraints and multi-source disturbances is investigated. A novel estimation method, composite-disturbance-observer (CDO), is proposed to provide an estimate for both modeled and unmodeled disturbances in an online manner. Based on the estimates provided by the CDO, the composite stochastic model predictive control (C-SMPC) scheme is designed for attitude control. The recursive feasibility of the C-SMPC method is guaranteed by reformulating the state and input constraints. Furthermore, the sufficient conditions are established to guarantee the stability of the overall closed-loop system. Finally, the simulation on the attitude control of the spacecraft is conducted to verify the effectiveness of the proposed method.  相似文献   

20.
This paper studies event-triggered synchronization control problem for delayed neural networks with quantization and actuator saturation. Firstly, in order to reduce the load of network meanwhile retain required performance of system, the event-triggered scheme is adopted to determine if the sampled signal will be transmitted to the quantizer. Secondly, a synchronization error model is constructed to describe the master-slave synchronization system with event-triggered scheme, quantization and input saturation in a unified framework. Thirdly, on the basis of Lyapunov–Krasovskii functional, sufficient conditions for stabilization are derived which can ensure synchronization of the master system and slave system; particularly, a co-designed parameters of controller and the corresponding event-triggered parameters are obtained under the above stability condition. Lastly, two numerical examples are employed to illustrate the effectiveness of the proposed approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号